Publications
Conference presentations and posters | 2020
The Contribution of advanced renewable transport fuels to transport decarbonisation in 2030 and beyond
Bacovsky D, Laurikko J. The Contribution of advanced renewable transport fuels to transport decarbonisation in 2030 and beyond. 28th European Biomass Conference and Exhibition (oral presentation) 2020.
In the light of climate change, there is an urgent need to decarbonize our societies. The transport sector is specifically challenging, as transport demand is still growing, and so are the sector´s GHG emissions. Several countries have set ambitious national targets for GHG reduction in the transport sector. These are often backed with policy measures for implementation of both advanced renewable transport fuels and electrification.
In a project set up jointly by two Technology Collaboration Programmes of the International Energy Agency, namely the IEA Bioenergy TCP and the Advanced Motor Fuels TCP, the contribution that advanced renewable transport fuels should make to the decarbonisation of the transport sector is assessed by means of country-specific assessments.
Peer reviewed papers | 2020
The effect of the reaction equilibrium on the kinetics of gas-solid reactions — A non-parametric modeling study.
Birkelbach F, Deutsch M, Werner A. The effect of the reaction equilibrium on the kinetics of gas-solid reactions — A non-parametric modeling study. Renewable Energy 2020.152:300-307.
The viability of thermochemical energy storage for a given application is often determined by the reaction kinetics under process conditions. For high exergetic efficiency the process needs to operate in close proximity to the reaction equilibrium. Thus, accurate kinetic models that include the effect of the reaction equilibrium are required.
In the present work, different parametrization methods for the equilibrium term in the General Kinetic Equation are evaluated by modeling the kinetics of two reaction systems relevant for thermochemical energy storage (CaC2O4 and CuO) from experimental data. A non-parametric modeling method based on tensor decompositions is used that allows for a purely data driven assessment of different parametrization methods.
Our analysis shows that including a suitable equilibrium term is crucial. Omitting the equilibrium term when modeling formation reactions can lead to seemingly negative activation energies. Our tests also show that for formation reactions, the reaction rate decreases much faster towards the equilibrium than theory predicts. We present an empirical modeling approach that can predict the reaction rate of gas-solid reactions, regardless of the shortcomings of theory. In this way, non-parametric modeling offers a powerful tool for applied research and may contribute to the advancement of the thermochemical energy storage technology.
Peer reviewed papers | 2020
The impact of project financing in optimizing microgrid design
Pecenak ZK, Mathiesen P, Fahy K, Cannon C, Ayandele E, Kirk TJ, Stadler M. The impact of project financing in optimizing microgrid design. Journal of Renewable and Sustainable Energy. November 2020. 12:026187.
A disconnect between real world financing and technical modeling remains one of the largest barriers to widespread adoption of microgrid technologies. Simultaneously, the optimal design of a microgrid is influenced by financial as well as technical considerations. This paper articulates the interplay between financial and technical assumptions for the optimal design of microgrids and introduces a design approach in which two financing structures drive an efficient design process. This approach is demonstrated on a descriptive test case, using well accepted financial indicators to convey project success. The major outcome of this paper is to provide a framework which can be adopted by the industry to relieve one of the largest hurdles to widespread adoption, while introducing multiple debt financing models to the literature on microgrid design and optimization. An equally important outcome from the test case, we provide several points of intuition on the impact of varying financing terms on the optimal solution.
Conference presentations and posters | 2020
The modification of biogenic carbon-rich solids opens new possibilities
Martini S, Kienzl N, Ortner M, Loipersböck J. The modification of biogenic carbon-rich solids opens new possibilities. Biochar Workshop @ 6th Central European Biomass Conference (oral presentation). 2020.
Peer reviewed papers | 2020
Thermochemical equilibrium study of ash transformation during combustion and gasification of sewage sludge mixtures with agricultural residues with focus on the phosphorus speciation
Hannl TK, Sefidari H, Kub M, Skoglund N, Öhmann M. Thermochemical equilibrium study of ash transformation during combustion and gasification of sewage sludge mixtures with agricultural residues with focus on the phosphorus speciation. Biomass Conversion and Biorefinery.2020
The necessity of recycling anthropogenically used phosphorus to prevent aquatic eutrophication and decrease the economic dependency on mined phosphate ores encouraged recent research to identify potential alternative resource pools. One of these resource pools is the ash derived from the thermochemical conversion of sewage sludge. This ash is rich in phosphorus, although most of it is chemically associated in a way where it is not plant available. The aim of this work was to identify the P recovery potential of ashes from sewage sludge co-conversion processes with two types of agricultural residues, namely wheat straw (rich in K and Si) and sunflower husks (rich in K), employing thermodynamic equilibrium calculations. The results indicate that both the melting behavior and the formation of plant available phosphates can be enhanced by using these fuel blends in comparison with pure sewage sludge. This enhanced bioavailability of phosphates was mostly due to the predicted formation of K-bearing phosphates in the mixtures instead of Ca/Fe/Al phosphates in the pure sewage sludge ash. According to the calculations, gasification conditions could increase the degree of slag formation and enhance the volatilization of K in comparison with combustion conditions. Furthermore, the possibility of precipitating phosphates from ash melts could be shown. It is emphasized that the results of this theoretical study represent an idealized system since in practice, non-equilibrium influences such as kinetic limitations and formation of amorphous structures may be significant. However, applicability of thermodynamic calculations in the prediction of molten and solid phases may still guide experimental research to investigate the actual phosphate formation in the future.
Peer reviewed papers | 2020
Transient CFD simulation of wood log combustion in stoves
Scharler R, Gruber T, Ehrenhöfer A, Kelz J, Mehrabian Bardar R, Bauer T, Hochenauer C, Anca-Couce A. Transient CFD simulation of wood log combustion in stoves. Renewable Energy 2020.145:651-662
Wood log stoves are a common residential heating technology that produce comparably high pollutant emissions. Within this work, a detailed CFD model for transient wood log combustion in stoves was developed, as a basis for its optimization. A single particle conversion model previously developed by the authors for the combustion of thermally thick biomass particles, i.e. wood logs, was linked with CFD models for flow and turbulence, heat transfer and gas combustion. The sub-models were selected based on a sensitivity analysis and combined into an overall stove model, which was then validated by simulations of experiments with a typical wood log stove, including emission measurements. The comparison with experimental results shows a good accuracy regarding flue gas temperature as well as CO2 and O2 flue gas concentrations. Moreover, the characteristic behavior of CO emissions could be described, with higher emissions during the ignition and burnout phases. A reasonable accuracy is obtained for CO emissions except for the ignition phase, which can be attributed to model simplifications and the stochastic nature of stove operation. Concluding, the CFD model allows a transient simulation of a stove batch for the first time and hence, is a valuable tool for process optimization.
Conference presentations and posters | 2020
Valorisation of industrial by-products from the pulp&paper and rendering industry
Ortner M, Valorisation of industrial by-products from the pulp&paper and rendering industry. 6th Central European Biomass Conference, 22-24 January 2020, Graz.
Conference presentations and posters | 2020
Virtual biomass combustion plant
Schulze K, Virtual biomass combustion plant. 6th Central European Biomass Conference, 22-24 January 2020, Graz.
Conference presentations and posters | 2021
A platform for energy management in communities
Derflinger N, Zellinger M. A platform for energy management in communities. ComForEn 2021 11. Symposium Communications for Energy Systems. 23 November 2021.
Peer reviewed papers | 2021
A review on bed material particle layer formation and its positive influence on the performance of thermo-chemical biomass conversion in fluidized beds
Kuba M, Skoglund N, Öhman M, Hofbauer H. A review on bed material particle layer formation and its positive influence on the performance of thermo-chemical biomass conversion in fluidized beds.Fuel.2021.291:120214. https://doi.org/10.1016/j.fuel.2021.120214
Bed material particle layer formation plays a significant role in thermo-chemical conversion of biomass. The interaction between biomass ash and bed material in fluidized bed conversion processes has been described for a variety of different applications and spans from fundamental research of formation mechanisms to effects of this layer formation on long-term operation in industrial-scale. This review describes the current state of the research regarding the mechanisms underlying layer formation and the positive influence of bed material particle layer formation on the operation of thermo-chemical conversion processes. Thus, the main focus lies on its effect on the catalytic activity towards gasification reactions and the impact on oxygen transport in chemical looping combustion. The review focuses on the most commonly investigated bed materials, such as quartz, feldspar or olivine. While the most relevant results for both the underlying mechanisms and the subsequently observed effects on the operation are presented and discussed, knowledge gaps where further research is necessary are identified and described.
Peer reviewed papers | 2021
Advanced Optimal Planning for Microgrid Technologies including Hydrogen and Mobility at a real Microgrid Testbed
Mansoor M, Stadler M, Auer H, Zellinger M. Advanced Optimal Planning for Microgrid Technologies including Hydrogen and Mobility at a real Microgrid Testbed. International Journal of Hydrogen Energy.2021.
This paper investigates the optimal planning of microgrids including the hydrogen energy system through mixed-integer linear programming model. A real case study is analyzed by extending the only microgrid lab facility in Austria. The case study considers the hydrogen production via electrolysis, seasonal storage and fueling station for meeting the hydrogen fuel demand of fuel cell vehicles, busses and trucks. The optimization is performed relative to two different reference cases which satisfy the mobility demand by diesel fuel and utility electricity based hydrogen fuel production respectively. The key results indicate that the low emission hydrogen mobility framework is achieved by high share of renewable energy sources and seasonal hydrogen storage in the microgrid. The investment optimization scenarios provide at least 66% and at most 99% carbon emission savings at increased costs of 30% and 100% respectively relative to the costs of the diesel reference case (current situation).
Conference presentations and posters | 2021
Advances in biomass gasification for the production of Bioheat, bioelectricity and biofuels
Anca-Couce A, Archan G, Von Berg L, Pongratz G, Martini S, Buchmayr M, Rakos C, Hochenauer C, Scharler R. Advances in biomass gasification for the production of Bioheat, bioelectricity and biofuels. 29th European Biomass Conference and Exhibition, EUBCE 2021, 26-29 April 2021. 2021.
Current barriers to increase the use of bioenergy for different applications are first discussed. Then, recent advances are presented on gasification-based technologies to overcome these barriers that have been reached at TU Graz together with several partners. Gasification-based fuel bed concepts integrated in biomass combustion can significantly reduce emissions for bioheat production. Advances are presented for modern biomass boilers, significantly reducing nitrogen oxides and particle matter emissions as well as increasing the feedstock flexibility; and micro-gasifiers for traditional biomass utilization, significantly reducing the emissions of unburnt products. Gasification-based processes have as well the possibility to score high electrical efficiencies and to synthetize several products as second-generation biofuels. Advances are presented on measures for reducing the presence of contaminants as tars, including the catalytic use of char for tar cracking; and in applications of the producer gas, including gas cleaning and direct coupling with a solid oxide fuel cell to maximize electricity production. © 2021, ETA-Florence Renewable Energies.
Other Publications | 2021
Algae4Fish - Video
Peer reviewed papers | 2021
An adaptive short-term forecasting method for the energy yield of flat-plate solar collector systems
Unterberger V, Lichtenegger K, Kaisermayer V, Gölles M, Horn M. An adaptive short-term forecasting method for the energy yield of flat-plate solar collector systems. Applied Energy. 2021 Apr 16;2021(293). https://doi.org/10.1016/j.apenergy.2021.116891
The number of large-scale solar thermal installations has increased rapidly in Europe in recent years, with 70 % of these systems operating with flat-plate solar collectors. Since these systems cannot be easily switched on and off but directly depend on the solar radiation, they have to be combined with other technologies or integrated in large energy systems. In order to most efficiently integrate and operate solar systems, it is of great importance to consider their expected energy yield to better schedule heat production, storage and distribution. To do so the availability of accurate forecasting methods for the future solar energy yield are essential. Currently available forecasting methods do not meet three important practical requirements: simple implementation, automatic adaption to seasonal changes and wide applicability. For these reasons, a simple and adaptive forecasting method is presented in this paper, which allows to accurately forecast the solar heat production of flat-plate collector systems considering weather forecasts. The method is based on a modified collector efficiency model where the parameters are continuously redetermined to specifically consider the influence of the time of the day. In order to show the wide applicability the method is extensively tested with measurement data of various flat-plate collector systems covering different applications (below 200 Celsius), sizes and orientations. The results show that the method can forecast the solar yield very accurately with a Mean Absolute Range Normalized Error (MARNE) of about 5 % using real weather forecasts as inputs and outperforms common forecasting methods by being nearly twice as accurate.
Peer reviewed papers | 2021
Analysing price cointegration of sawmill by-products in the forest-based sector in Austria
Fuhrmann M, Dißauer C, Strasser C, Schmid E. Analysing price cointegration of sawmill by-products in the forest-based sector in Austria. Forest Policy and Economics. 2021.131:102560.
Empirical analyses of interlinkages and price dependencies in the forest-based sector support the forecast of market developments and the design of efficient utilization pathways. This article aims at analysing price cointegration between roundwood (sawlogs, pulpwood), sawmill by-products (sawdust, wood chips) and wood products (pellets, particle board) in the forest-based sector in Austria. Monthly price data for the period 2005–2019 were used for the following statistical tests: (1) The Augmented-Dickey-Fuller and Zivot-Andrews unit root tests were conducted to investigate stationarity of the data; (2) The Johansen Cointegration test was pairwise applied to price time series; (3) The Granger Causality test was used for cointegrated time series to examine which one is price leading. Furthermore, sawmill by-product prices were modelled as Vector Error Correction Models (VECM) to analyse their common behaviour. The dataset was divided to a training (2005–2017) and test (2018–2019) subset to assess the prediction accuracy of the models. The training data were used to estimate a VAR model as basis for forecasts, which were compared to the test data. Results show that sawdust prices are cointegrated and thus modelled with pellet and particle board prices. In contrast, wood chips are used for several applications and thus prices are cointegrated and modelled with prices of sawlogs, pulpwood, pellets and particle board. The comparison with the test data showed that forecasts were able to predict data from 2018 to 2019 well. However, a decrease in prices, starting in 2019 and intensified by the Covid-19 pandemic, could not be fully captured by these forecasts.
Peer reviewed papers | 2021
Analysis of H2S-related short-term degradation and regeneration of anode- and electrolyte supported solid oxide fuel cells fueled with biomass steam gasifier product gas
Pongratz G, Subotić V, Schroettner H, Hochenauer C, Skrzypkiewicz M, Kupecki J, Anca-Couce A, Scharler R. Analysis of H2S-related short-term degradation and regeneration of anode- and electrolyte supported solid oxide fuel cells fueled with biomass steam gasifier product gas. Energy.2021.218:119556.
Using solid oxide fuel cells in biomass gasification based combined heat and power production is a promising option to increase electrical efficiency of the system. For an economically viable design of gas cleaning units, fuel cell modules and further development of suitable degradation detection methods, information about the behavior of commercially available cell designs during short-term poisoning with H2S can be crucial. This work presents short-term degradation and regeneration analyses of industrial-relevant cell designs with different anode structure and sulfur tolerance fueled with synthetic product gas from wood steam gasification containing 1 to 10 ppmv of H2S at 750°C and 800°C. Full performance regeneration of both cell types was achieved in all operating points. The high H2O content and avoided fuel depletion may have contributed to a lower performance degradation and better regeneration of the cells. A strong influence of the catalytically active anode volume on poisoning and regeneration behavior was quantified, thereby outlining the importance of considering the anode structure besides the sulfur tolerance of the anode material. Hence, cells with less sulfur tolerant anode material but larger anode volume might outperform cells less sensitive to sulfur in the case of an early detection of a gas cleaning malfunction.
Peer reviewed papers | 2021
Ash Transformation during Single-Pellet Combustion of Agricultural Biomass with a Focus on Potassium and Phosphorus
Hedayati A, Lindgren R, Skoglund N, Boman C, Kienzl N, Öhman M. Ash Transformation during Single-Pellet Combustion of Agricultural Biomass with a Focus on Potassium and Phosphorus. Energy and Fuels. January 2021. 35(2):1449–1464.
In this study, ash transformation and release of critical ash-forming elements during single-pellet combustion of different types of agricultural opportunity fuels were investigated. The work focused on potassium (K) and phosphorus (P). Single pellets of poplar, wheat straw, grass, and wheat grain residues were combusted in a macro-thermogravimetric analysis reactor at three different furnace temperatures (600, 800, and 950 °C). In order to study the transformation of inorganic matters at different stages of the thermal conversion process, the residues were collected before and after full devolatilization, as well as after complete char conversion. The residual char/ash was characterized by scanning electron microscopy–energy-dispersive X-ray spectroscopy, X-ray diffraction, inductively coupled plasma, and ion chromatography, and the interpretation of results was supported by thermodynamic equilibrium calculations. During combustion of poplar, representing a Ca–K-rich woody energy crop, the main fraction of K remained in the residual ash primarily in the form of K2Ca(CO3)2 at lower temperatures and in a K–Ca-rich carbonate melt at higher temperatures. Almost all P retained in the ash and was mainly present in the form of hydroxyapatite. For the Si–K-rich agricultural biomass fuels with a minor (wheat straw) or moderate (grass) P content, the main fraction of K remained in the residual ash mostly in K–Ca-rich silicates. In general, almost all P was retained in the residual ash both in K–Ca–P–Si-rich amorphous structures, possibly in phosphosilicate-rich melts, and in crystalline forms as hydroxyapatite, CaKPO4, and calcium phosphate silicate. For the wheat grain, representing a K–P-rich fuel, the main fraction of K and P remained in the residual ash in the form of K–Mg-rich phosphates. The results showed that in general for all studied fuels, the main release of P occurred during the devolatilization stage, while the main release of K occurred during char combustion. Furthermore, less than 20% of P and 35% of K was released at the highest furnace temperature for all fuels.
Peer reviewed papers | 2021
Ash transformation during single-pellet gasification of agricultural biomass with focus on potassium and phosphorus
Hedayati A, Sefidari H, Boman C, Skoglund N, Kienzl N, Öhman M. Ash transformation during single-pellet gasification of agricultural biomass with focus on potassium and phosphorus. Fuel Processing Technology. 15 June 2021.217:106805
Agricultural biomasses and residues can play an important role in the global bioenergy system but their potential is limited by the risk of several ash-related problems such as deposit formation, slagging, and particle emissions during their thermal conversion. Therefore, a thorough understanding of the ash transformation reactions is required for this type of fuels. The present work investigates ash transformation reactions and the release of critical ash-forming elements with a special focus on K and P during the single-pellet gasification of different types of agricultural biomass fuels, namely, poplar, grass, and wheat grain residues. Each fuel was gasified as a single pellet at three different temperatures (600, 800, and 950 °C) in a Macro-TGA reactor. The residues from different stages of fuel conversion were collected to study the gradual ash transformation. Characterization of the residual char and ash was performed employing SEM-EDS, XRD, and ICP with the support of thermodynamic equilibrium calculations (TECs). The results showed that the K and P present in the fuels were primarily found in the residual char and ash in all cases for all studied fuels. While the main part of the K release occurred during the char conversion stage, the main part of the P release occurred during the devolatilization stage. The highest releases – less than 18% of P and 35% of K – were observed at the highest studied temperature for all fuels. These elements were present in the residual ashes as K2Ca(CO3)2 and Ca5(PO4)3OH for poplar; K-Ca-rich silicates and phosphosilicates in mainly amorphous ash for grass; and an amorphous phase rich in K-Mg-phosphates for wheat grain residues.
Other Publications | 2021
Betrieb verbundener Nahwärmenetze mit getrennten Eigentümern
Zemann C, Muschick D, Kaisermayer V, Gölles M. Betrieb verbundener Nahwärmenetze mit getrennten Eigentümern. QM Heizwerke Fachtagung, Bad Vöslau, 14. Oktober, 2021. (oral presentation)
Warum ist es sinnvoll, Wärmenetze zu verbinden?
- Erläuterung am Beispiel des Projekts Thermaflex
- Drei Wärmenetze bei Leibnitz in der Steiermark.
- Sind gewachsen und haben die Grenzen ihrer Nachbar-Wärmenetze erreicht.
- Die Wärmenetze werden durch zwei getrennte Eigentümer betrieben.
Peer reviewed papers | 2021
Bioenergy technologies, uses, market and future trends with Austria as a case study
Anca-Couce A, Hochenauer C, Scharler R. Bioenergy technologies, uses, market and future trends with Austria as a case study. Renewable and Sustainable Energy Reviews.2021;135:110237.
The current bioenergy uses and conversion technologies as well as future trends for the production of heat, power, fuels and chemicals from biomass are reviewed. The focus is placed in Austria, which is selected due to its high bioenergy utilization, providing 18.4% of the gross energy final consumption in 2017, and its strong industrial and scientific position in the field. The most common bioenergy application in Austria is bioheat with 170 PJ in 2017 mainly obtained from woody biomass combustion, followed by biofuels with 21 PJ and bioelectricity with 17 PJ. Bioheat has a stable market, where Austrian manufacturers of boilers and stoves have a strong position exporting most of their production. Future developments in bioheat production should go in the line of further reducing emissions, increasing feedstock flexibility and coupling with other renewables. For bioelectricity and biofuels, the current framework does not promote the growth of the current main technologies, i.e. combined heat and power (CHP) based on biomass combustion or biogas and first generation biofuels. However, an increase in all bioenergy uses is required to achieve the Austrian plan to be climate neutral in 2040. The current initiatives and future possibilities to achieve this increase are presented and discussed, e.g. mandatory substitution of old oil boilers, production of biomethane and early commercialization of CHP with a high efficiency or demonstration of advanced biofuels production based on gasification.
Peer reviewed papers | 2021
Categorization of small-scale biomass combustion appliances by characteristic numbers
Feldmeier S, Schwarz M, Wopienka E, Pfeifer C. Categorization of small-scale biomass combustion appliances by characteristic numbers. Renewable Energy. 2021.163:2128-2136.
The market offers a broad range of different combustion appliances dedicated to residential heating with biomass. The effect of fuel properties on the formation of slag and emissions varies and the technology influences the impact to a certain extent. The applicability of biomass fuels is not only determined by operational settings but also by the design of boiler components as grate area and combustion chamber. Aspects as the fuel load on the grate, residence time, geometry of grate and combustion chamber design, as well as feeding and de-ashing influence the extent of slag formation and emission release. The determination of characteristic numbers by means of constructional measures allows a systematic comparison and - in a further step - an assessment/categorization of combustion technologies. After conducting a boiler survey relevant parameters regarding grate, combustion chamber, feeding, and ash removal were gathered. Characteristic numbers were specified in order to compare technological aspects. The results of this study allow the investigation of the influence of the combustion technology on the performance. They will assist the systematic and targeted design of small-scale boilers and the optimization of combustion appliances in future, especially when it comes to fuel-flexibility.
Other Publications | 2021
CO-lambda Optimierung - Betrieb von Biomassefeuerungen mit maximaler Effizienz und minimalen Emissionen
Zemann C. CO-lambda Optimierung - Betrieb von Biomassefeuerungen mit maximaler Effizienz und minimalen Emissionen. CO-lambda Optimierung - Betrieb von Biomassefeuerungen mit maximaler Effizienz und minimalen Emissionen. March 2021.
Peer reviewed papers | 2021
Combustion of poultry litter and mixture of poultry litter with woodchips in a fixed bed lab-scale batch reactor
Katsaros G, Sommersacher P, Retschitzegger S, Kienzl N, Tassou SA, Pandey DS. Combustion of poultry litter and mixture of poultry litter with woodchips in a fixed bed lab-scale batch reactor. Fuel. 2021.286.119310.
Experiments have been conducted in a batch fixed bed lab-scale reactor to investigate the combustion behaviour of three different biomass fuels, poultry litter (PL), blend of PL with wood chips (PL/WC) and softwood pellets (SP). Analysis of the data gathered after completion of the test runs, provided useful insights about the thermal decomposition behaviour of the fuels, the formation of N gaseous species, the release of ash forming elements and the estimation of aerosol emissions. It was observed that the N gaseous species are mainly produced during the devolatilisation phase. Hydrogen cyanide (HCN) was the predominant compound in the case of SP combustion, whereas ammonia (NH3) displayed the highest concentration during the combustion of PL and blend (PL/WC). With reference to ash forming elements, the release rates of potassium (K) and sodium (Na) range between 15–50% and 20–37% respectively, whereas the release rate of sulphur (S) falls between 54–92%. Chlorine (Cl) presents very high release rate for all tested fuels acquiring values greater than 85%, showing the volatile nature of the specific compound. The maximum potential of aerosol emissions was estimated based on the calculation of ash forming elements. In particular, during PL combustion the maximum aerosol emissions were observed, 2806 mg/Nm3 (dry flue gas, 13 vol% O2), mainly influenced by the release rate of K in the gas phase. Fuel indexes for the pre-evaluation of combustion related challenges such as NOx emissions, potential for aerosols formation, corrosion risk, and ash melting behaviour have also been investigated.
Reports | 2021
Control of DHC networks and Reduction of the operating temperatures in DH systems
Task 55 Towards the Integration of Large SHC Systems into DHC Networks
Gölles M, Muschick D, Unterberger V, Leoni P, Schmidt R, Lennermo G. "Control of DHC networks and Reduction of the operating temperatures in DH systems". EA SHC FACTSHEET 55.A-D4.2. Date of Publication: 28.01.2021. https://task55.iea-shc.org/fact-sheets
Overview on different approaches for the control of the heat distribution networks in case of the integration of large-scale solar thermal systems, and different possibilities for the reduction of the operating temperatures in DH systems.
Reports | 2021
Control of large-scale solar thermal plants
Task 55 Towards the Integration of Large SHC Systems into DHC Networks
Gölles M, Unterberger V. "Control of large-scale solar thermal plants". IEA SHC FACTSHEET 55.B-D3.1. Date of Publication: 28.01.2021. https://task55.iea-shc.org/fact-sheets
Overview on the control of large-scale thermal plants, limited to plants feeding into DH networks as well as theirkey components, i.e. the actual collector circuit and the heat exchanger between primary and secondary circuit.