Sort Title Year

Publications


Other publication | 2021

Gemeinsam richtig heizen - Video

External Link

Details


Other publication | 2021

HPC - Workshop

Experimentelle Analyse, Simulation und Regelung von Absorptionswärmepumpen/-kältemaschinen

Zlabinger S, Unterberger V, Gölles M, Wernhart M, Rieberer R, Poier H, Rohinger C, Kemmerzehl C, Halmdienst C. Experimentelle Analyse, Simulation und Regelung von Absorptionswärmepumpen/-kältemaschinen. Online-Workshop im Rahmen des FFG-Projekts HPC ("4. Ausschreibung Energieforschung 2017") am 09.04.2021.

Download PDF

Details

Durch die vermehrte Einbindung von Absorptionswärmepumpen und -kältemaschinen in bestehende und zukünftige Energiesysteme des Kälte- und Wärmesektors kann der Anteil erneuerbarer Energien deutlich gesteigert werden. Um dies erfolgreich umsetzen zu können, müssen die Betriebsstrategien und Regelungen dieser Systeme jedoch in der Lage sein, auch mit dynamischen und stark variierenden Betriebsbedingungen umgehen zu können. Dieser Herausforderung hat sich das von der FFG geförderte Projekt HPC – heat pumping system control gewidmet. Im Rahmen dieses Workshops sollen die Ergebnisse und deren Nutzen für die Praxis präsentiert und diskutiert werden.


Peer Reviewed Scientific Journals | 2021

Influence of solvent temperature and type on naphthalene solubility for tar removal in a dual fluidized bed biomass gasification process

Tonpakdee P, Hongrapipat J, Siriwongrungson V, Rauch R, Pang S, Thaveesri J, Messner M, Kuba M, Hofbauer H. Influence of solvent temperature and type on naphthalene solubility for tar removal in a dual fluidized bed biomass gasification process. Current Applied Science and Technology. 2021.21(4):751-76.

External Link

Details

Tar condensation is a cause of blockage in downstream application of the gasification process. An oil scrubber is considered as an effective method for tar removal. In this research, the naphthalene solubility in different local Thai oils and water was investigated in a laboratory-scale test-rig. The solubility value was conducted at 30, 50, 70, and 80°C. Biodiesels investigated were rapeseed methyl ester (RME) and two different palm methyl esters (PME 1 and PME 2). Furthermore, vegetable oils including sunflower oil, rice bran oil, crude palm oil, and refined palm oil were examined. The results showed that higher temperature enhanced naphthalene solubility in all types of investigated oils. Biodiesel has the highest value of naphthalene solubility. All scrubbing oils have similar naphthalene solubility trends at the temperature range of 50-80°C in the order of RME > PME 1 > PME 2 > diesel > sunflower oil > refined palm oil > rice bran oil > crude palm oil. Based on these experimental investigations, PME 1 has a naphthalene solubility value similar to RME. Therefore, PME 1 has been selected to be tested as scrubbing solvent in the 1 MWel prototype dual fluidized gasifier located in Nong Bua district, Nakhon Sawan province, Thailand.


Peer Reviewed Scientific Journals | 2021

Innovative laboratory unit for pre-testing of oxygen carriers for chemical-looping combustion

Fleiss B, Fuchs J, Penthor S, Arlt S, Pachler R, Müller S, Hofbauer H. Innovative laboratory unit for pre-testing of oxygen carriers for chemical-looping combustion. Biomass Conversion and Biorefinery. 2021

External Link

Details

Chemical-looping combustion (CLC) is a highly efficient CO2 separation technology with no direct contact between combustion air and fuel. A metal oxide is used as an oxygen carrier (OC) and acts in a dual fluidized bed as a separation tool and supplies the fuel with oxygen, which as an oxidation medium causes combustion to CO2 and H2O. The use of solid fuels, especially biomass, is the focus of current investigations. The OC plays a key role, because it must meet special requirements for solid fuels, which are different to gaseous fuels. The ash content, special reaction mechanisms, and increased abrasion make research into new types of OC essential. Preliminary testing of OC before their use in larger plants regarding their suitability is recommended. For this reason, this work shows the design and the results of a laboratory reactor, which was planned and built for fundamental investigation of OC. Designed as a transient fluidized bed, the reactor, equipped with its own fuel conveying system and an in situ solid sampling, is intended to be particularly suitable for cheap and rapid pre-testing of OC materials. During the tests, it was shown that the sampling device enables non-selective sampling. Different OC were tested under various operating conditions, and their ability to convert different fuels could be quantified. The results indicate that OC can be sufficiently investigated to recommend operation in larger plants.


Peer Reviewed Scientific Journals | 2021

Integration of dual fluidized bed steam gasification into the pulp and paper industry

Kuba M, Benedikt F, Fürsatz K, Fuchs J, Demuth M, Aichernig C, Arpa L, Hofbauer H. Integration of dual fluidized bed steam gasification into the pulp and paper industry. Biomass Conversion and Biorefinery. 23 Dec 2021

External Link

Details

The pulp and paper industry represents an industry sector which is characterised by its already high degree of sustainability. Biomass is a renewable input material, and typically highly developed recovery cycles minimise the loss of chemicals used in the pulping process. However, certain parts of the recovery cycle are still operated on fossil fuels. This study deals with the substitution of the fossil-based gaseous fuel with product gas from biomass gasification.

Gasification experiments have shown that bark available at pulp and paper mills is suitable to produce a product gas via dual fluidised bed steam gasification as a promising substitute for natural gas. Based on the comparison of process layouts regarding the separation of non-process elements, separation efficiency is derived for different setups. To ensure operational security of the chemical recovery cycle, comprehensive gas cleaning including heat exchangers, a particle filter, and a liquid scrubber unit is advised. The gas flow of fuel gas into the gas burner is increased as the heating value of the product gas is accordingly lower in comparison to natural gas. Furthermore, adaptions of the gas burner might be necessary to address the earlier ignition of the H2-rich product gas compared to natural gas.


Peer Reviewed Scientific Journals | 2021

Integration of market aspects into material development: approach and exemplification for a wood composite

Fuhrmann M, Schwarzbauer P, Hesser F. Integration of market aspects into material development: approach and exemplification for a wood composite. European Journal of Wood and Wood Products. 2021. https://doi.org/10.1007/s00107-021-01697-z

External Link

Details

Due to a variety of applications and complex requirements in specific fields of use, the number of different materials is increasing. Thereof, the majority fails at the stage of market introduction, because the focus of material development is mostly on technical aspects, while market aspects are often neglected. One possible way of market introduction is material substitution. Thereby, requirements a material needs to meet are well known. However, a certain market focus on material development would be helpful regarding the final goal of the customer satisfaction. Therefore, this study presents an approach, which aims at guiding the technical material development and thus starts one stage earlier than most other studies, which focus on market introduction. A multi-stage approach helps integrating market aspects into material development, using the following methods: (1) method of Ashby to compare materials from a technical point of view and identify theoretically substitutable material groups and potential applications, (2) market data research and comparison for the identification of attractive markets, (3) method of Kano to classify material requirements and prioritize the optimization of material properties to satisfy the customers in selected markets. This approach is showcased and discussed using the example of an innovative wood composite under development, where it represented an aiding tool for guiding the further material development. An adaptation to any other material is possible at each of the three stages, although there are some limitations, which have to be considered, for example the selection of technical properties for the material comparison.


Peer Reviewed Scientific Journals | 2021

Interactions of Olivine and Silica Sand with Potassium- or Silicon-Rich Agricultural Residues under Combustion, Steam Gasification, and CO2Gasification

Li G, Nathan GJ, Kuba M, Ashman PJ, Saw WL. Interactions of Olivine and Silica Sand with Potassium- or Silicon-Rich Agricultural Residues under Combustion, Steam Gasification, and CO2Gasification. Industrial and Engineering Chemistry Research. 2021.60(39):14354-14369.

External Link

Details

Interactions between olivine or silica sand and potassium (K)-rich grape marc or silicon (Si)-rich wheat straw were studied in a fixed-bed reactor under combustion, steam, or a CO2 gasification atmosphere. This study focused on the effects of atmosphere composition, feedstock, and bed material type on the thermochemical aspects of agglomeration. The agglomeration extent of grape marc with olivine as the bed material under air and steam atmospheres is significantly less than with silica sand. The presence of CO2, compared to that of O2 or steam, was found to promote the reaction between K and olivine by facilitating the production of reactive silica from olivine carbonization. The use of olivine promotes the release of K by more than 10% compared with silica. No significant differences were observed in the agglomeration extent of wheat straw in its interaction with either olivine or silica sand. Nevertheless, olivine alters the agglomeration mechanism of wheat straw to become “melting-induced” from “coating-induced” in a silica bed.


Peer Reviewed Scientific Journals | 2021

Mixed-integer linear programming based optimization strategies for renewable energy communities

Cosic A, Stadler M, Mansoor M, Zellinger M. Mixed-integer linear programming based optimization strategies for renewable energy communities. Energy. 237.2021

External Link

Details

Local and renewable energy communities show a high potential for the efficient use of distributed energy technologies at regional levels according to the Clean Energy Package of the European Union. However, until now there are only limited possibilities to bring such energy communities into reality because of several limitation factors. Challenges are already encountered during the planning phase since a large number of decision variables have to be considered depending on the number and type of community participants and distributed technologies. This paper overcomes these challenges by establishing a mixed-integer linear programming based optimal planning approach for renewable energy communities. A real case study is analyzed by creating an energy community testbed with a leading energy service provider in Austria. The case study considers nine energy community members of a municipality in Austria, distributed photovoltaic systems, energy storage systems, different electricity tariff scenarios and market signals including feed-in tariffs. The key results indicate that renewable energy communities can significantly reduce the total energy costs by 15% and total carbon dioxide emissions by 34% through an optimal selection and operation of the energy technologies. In all the optimization scenarios considered, each community participant can benefit both economically and ecologically.


Peer Reviewed Scientific Journals | 2021

Model-Based Estimation of the Flue Gas Mass Flow in Biomass Boilers.

Niederwieser H, Zemann C, Goelles M, Reichhartinger M. Model-Based Estimation of the Flue Gas Mass Flow in Biomass Boilers. IEEE Transactions on Control Systems Technology. 2021 Jul;19(4):1609 - 1622. https://doi.org/10.1109/TCST.2020.3016404

External Link

Details

Three estimators for the estimation of the flue gas mass flow in biomass boilers are presented and compared, namely a sliding-mode observer, a Kalman filter, and a so-called steady-state estimator. The flue gas mass flow is an important process variable in biomass boilers as it contains information about the supplied mass flows of air and decomposed fuel. It is also related to the generated heat flow. Furthermore, its knowledge may be exploited in model-based control strategies which allow one to keep pollutant emissions low, on the one hand, and to achieve high efficiency, on the other hand. However, due to fouling of the equipment over time, measurements and existing estimation methods are not suitable for long-term applications. The estimators proposed in this article are based on a dynamic model for gas tube heat exchangers. They are capable of handling the fouling of the heat exchanger and, additionally, they offer the possibility of monitoring the degree of fouling. By incorporating an additional differential pressure measurement and extending the aforementioned estimators, an improvement regarding the dynamic response and the estimation accuracy is achieved. The application of the estimators to real measurement data from both, a medium-scale and a small-scale biomass boiler, demonstrates their wide applicability.


Peer Reviewed Scientific Journals | 2021

Modelling fuel flexibility in fixed-bed biomass conversion with a low primary air ratio in an updraft configuration

Anca-Couce A, Archan G, Buchmayr M, Essl M, Hochenauer C, Scharler R. Modelling fuel flexibility in fixed-bed biomass conversion with a low primary air ratio in an updraft configuration. Fuel. 2021.296:120687.

External Link

Details

Fixed-bed biomass conversion with a low primary air ratio and a counter-current configuration has a high feedstock flexibility, as it resembles updraft gasification, and the potential to reduce emissions when integrated in biomass combustion systems. A 1D bed model was validated with experimental results from a biomass combustion boiler with such a bed conversion system, predicting with a good accuracy the temperatures in the reactor and producer gas composition. The model was applied for different cases to investigate the fuel flexibility of this combustion system, including the influence of moisture content and the maximum temperatures achieved in the bed. It was shown that with variations in fuel moisture content from 8 to 30% mass w.b. the producer gas composition, char reduction to CO or maximum temperatures at the grate were not affected due to the separation of the char conversion and pyrolysis/drying zones. Flue gas recirculation was the only possible measure with the tested configuration to reduce the maximum temperatures close to the grate, which is beneficial e.g. to avoid slagging with complicated fuels. A higher tar content was obtained than in conventional updraft gasifiers, which is attributed to the absence of tar condensation in the bed due to the limited height of the reactor and the integration in the combustion chamber. The presented model can support the development of such combustion technologies and is a relevant basis for detailed CFD simulations of the bed or gas phase conversion.


Peer Reviewed Scientific Journals | 2021

Operation of coupled multi-owner district heating networks via distributed optimization

Kaisermayer V, Muschick D, Horn M, Gölles M. Operation of coupled multi-owner district heating networks via distributed optimization. Energy Reports. 2021 Okt;7(Suppl. 4):273-281. https://doi.org/10.1016/j.egyr.2021.08.145

External Link

Details

The growth of district heating and cooling (DHC) networks introduces the possibility of connecting them with neighbouring networks. Coupling networks can save costs by reducing operating hours of peak load or backup boilers, or free up production capacity for network expansion. Optimization-based energy management systems (EMS) already provide operators of individual DHC networks with solutions to the unit commitment and economic dispatch problem. They are especially useful for complex networks with multiple producers and integrated renewable energy sources, where incorporating forecasts is important. Time-dependent constraints and network capacity limitations can easily be considered. For coupled networks, a centralized optimization would provide a minimum with respect to an objective function which can incorporate fuel costs, operational costs and costs for emissions. However, the individual coupled networks are generally owned by different organizations with competing objectives. The centralized solution might not be accepted, as each company aims to optimize its own objective. Additionally, all data has to be shared with a centralized EMS, and it represents a single point of failure. A decentralized EMS may therefore be a better choice in a multi-owner setting. In this article, a novel decentralized EMS is presented that can handle multi-owner structures with cooperative and non-cooperative coupling. Each local EMS solves its own optimization problem, and an iterative Jacobi-style algorithm ensures consensus among the networks. The distributed EMS is compared to a centralized EMS based on a representative real-world example consisting of three coupled district heating networks operated by two companies.


Other Presentations | 2021

Operation of Coupled Multi-Owner District Heating Networks via Distributed Optimization

Muschick D, Gölles M, Kaisermayer V, Horn M. Operation of Coupled Multi-Owner District Heating Networks via Distributed Optimization.17th International Symposium on District Heating and Cooling. Nottingham Trent University, Nottingham, United Kingdom. 7. Sep 2021. Oral Presentation. [online]

Download PDF

Details

The simultaneous operation of multiple connected heating networks can be handled by optimization techniques. However, a global optimum might not represent a good operating strategy if the networks belong to different owners and thus might habe competing interests. An approach from game theory then needs to be applied, which finds a generalized Nash equilibrium instead.


Technical Reports | 2021

OptEnGrid Optimal integration of heat, electricity and gas systems to increase efficiency and reliability

Download PDF

Details

OptEnGrid is a cross-sectoral multi-energy system optimization tool for the optimal planning and dispatch of the Distributed Energy Resource (DER) technologies in smart- and microgrids. The methodology of OptEnGrid considers an optimization model which is based on Mixed-Integer Linear Programming (MILP) framework. The following sub-sections provide more details about the energy flow and system optimization inside OptEnGrid and the choice of the optimization over simulation


Other Presentations | 2021

Optimal operation of cross-ownership district heating and cooling networks

Muschick D, Kaisermayer V, Gölles M, Horn M.Optimal operation of cross-ownership district heating and cooling networks. 20th European Roundtable on Sustainable Consumption and Production. 9. Sep 2021. Graz. Oral Presentation.

Download PDF

Details


Conference contributions | 2021

Optimal operation of cross-ownership district heating and cooling networks

Kaisermayer V, Muschick D, Gölles M, Horn M. Optimal operation of cross-ownership district heating and cooling networks. 17th International Symposium on District Heating and Cooling: DHC 2021. 7 Sep 2021. Oral presentation.

Details


Peer Reviewed Scientific Journals | 2021

Optimal planning of thermal energy systems in a microgrid with seasonal storage and piecewise affine cost functions

Mansoor M, Stadler M, Zellinger M, Lichtenegger K, Auer H, Cosic A. Optimal planning of thermal energy systems in a microgrid with seasonal storage and piecewise affine cost functions. Energy. 2021:215;119095.

External Link

Details

The optimal design of microgrids with thermal energy system requires optimization techniques that can provide investment and scheduling of the technology portfolio involved. In the modeling of such systems with seasonal storage capability, the two main challenges include the low temporal resolution of available data and the non-linear cost versus capacity relationship of solar thermal and heat storage technologies. This work overcomes these challenges by developing two different optimization models based on mixed-integer linear programming with objectives to minimize the total energy costs and carbon dioxide emissions. Piecewise affine functions are used to approximate the non-linear cost versus capacity behavior. The developed methods are applied to the optimal planning of a case study in Austria. The results of the models are compared based on the accuracy and real-time performance together with the impact of piecewise affine cost functions versus non-piecewise affine fixed cost functions. The results show that the investment decisions of both models are in good agreement with each other while the computational time for the 8760-h based model is significantly greater than the model having three representative periods. The models with piecewise affine cost functions show larger capacities of technologies than non-piecewise affine fixed cost function based models.


Technical Reports | 2021

Planung zellularer Energiesysteme

Teil 1: Effektive integrierte Investitions- und Betriebsplanung von Energiezellen

VDE Verband der Elektrotechnik e.V. Energietechnische Gesellschaft (ETG)

External Link

Details

In einem zellularen Energiesystem wird die physikalische Balance zwischen Energieangebot und -nachfrage so weit als möglich bereits auf regionaler, lokaler Ebene hergestellt. Der zentrale Baustein dabei ist die Energiezelle. Sie kann Energie in Form von Wärme, Elektrizität oder Gas aufnehmen und/oder Elektrizität und Wärme (z. B. aus erneuerbaren Energien) selbst erzeugen, um so den eigenen Wärme- und Elektrizitätsbedarf zu decken. Energieüberschüsse können (elektrisch und/oder thermisch) gespeichert oder anderen Zellen im Nahbereich oder einem Energieversorger zur Verfügung gestellt werden. Ein Energiezellenmanagement kann in Koordination mit Nachbarzellen den Ausgleich von Erzeugung und Verbrauch über alle vorhandenen Energieformen organisieren.
Die Planung und der Betrieb zellularer Energiesysteme ist eine komplexe Aufgabe, da eine Vielzahl von dezentralen Energietechnologien, verschiedenste Ziele und auch Entscheidungsträger berück-sichtigt werden müssen.
Der vorliegende VDE Impuls beschreibt als ersten Schritt die Planung einer Energiezelle, welche mit Energieversorgern interagieren kann. Er ist der Auftakt einer Reihe weiterer Veröffentlichungen zur detaillierten Planung von Energiezellen und zellularen Energiesystemen.


Peer Reviewed Scientific Journals | 2021

Real-life emissions from residential wood combustion in Austria: From TSP emissions to PAH emission profiles, diagnostic ratios and toxic risk assessment

B Kirchsteiger, F Kubik, R Sturmlechner, H Stressler, M Schwabl, M Kistler, A Kasper-Giebl. Real-life emissions from residential wood combustion in Austria: From TSP emissions to PAH emission profiles, diagnostic ratios and toxic risk assessment. Atmospheric Pollution Research. 2021.12:8.

External Link

Details

Residential wood combustion is, besides particulate emissions, also linked to emissions of organic compounds, comprising various toxic substances such as polycyclic aromatic hydrocarbons (PAHs). Although, literature data has shown that highest emissions occur during maloperations caused by the user itself, most studies focus on lab-testing not reflecting the situation in the field. This study evaluates the real-life situation in Austria, investigating emissions of total suspended particles (TSP) and particle-bound substances of four manually operated room heaters commonly installed in people's homes. Measurements were conducted within a field measurement campaign realized in the scope of the Clean Air by biomass project. To evaluate the impact of the users' habit two types of combustion experiments were performed, one representing the diversity of possible maloperations and one realized under optimized conditions following a strict optimization protocol. As special focus was laid on PAHs, sampling was realized using a dilution system adapted for the use in the field. Generally, optimization lead to a clear decrease of most compounds (i.e. TSP, OC, EC, PAHs), however, emissions of the anhydrosugar levoglucosan were not affected at all. Total PAH emissions could be clearly reduced, moreover, optimization lead to a shift towards low molecular weight PAHs and thus, less toxic ones, clearly reflected by lower toxicity equivalents. Correlation analysis using the Spearman's rank method showed significantly high correlations among the individual PAH congeners, and rather low ones with other target substances.


Peer Reviewed Scientific Journals | 2021

Single Pellet Combustion of Sewage Sludge and Agricultural Residues with a Focus on Phosphorus

Häggström G, Hannl TK, Hedayati A, Kuba M, Skoglund N, Öhman M. Single Pellet Combustion of Sewage Sludge and Agricultural Residues with a Focus on Phosphorus. Energy & Fuels. 8 June 2021.

External Link

Details

Recycling of phosphorus in combination with increased utilization of bioenergy can mitigate material and global warming challenges. In addition, co-combustion of different fuels can alleviate ash-related problems in thermal conversion of biomass. The aim of this study is to investigate the ash transformation reactions of mainly P in co-combustion of P-rich sewage sludge (SS) with K-rich sunflower husks (SH) and K- and Si-rich wheat straw (WS). Single pellets of 4 mixtures (10 and 30 wt % SS in WS and 15 and 40 wt % SS in SH) and pure SS were combusted in an electrically heated furnace at process temperatures relevant for fluidized bed combustion (800 and 950 °C). Collected ash fractions were analyzed by inductively coupled plasma techniques, ion chromatography, scanning electron microscopy–energy-dispersive X-ray spectroscopy, and X-ray diffraction. Thermodynamic equilibrium calculations were performed to interpret the results. Over 90% of K and P was found to be captured within the residual ash with 30–70% P in crystalline K-bearing phosphates for mixtures with low amounts of SS (WSS10 and SHS15). The significant share of K and P in the amorphous material could be important for P recovery. For the lower percentage mixtures of SS (WSS10 and SHS15), P in crystalline phases was mainly found in K-whitlockite and CaKPO4. For the higher percentage SS mixtures, most of P was found in whitlockites associated with Fe and Mg, and no crystalline phosphates containing K were detected. For P recovery, co-combustion of the lower SS mixtures is favorable, and they are suggested to be further studied concerning the suitability for plant growth.


Peer Reviewed Scientific Journals | 2021

Steam gasification of biomass – Typical gas quality and operational strategies derived from industrial-scale plants

Larsson A, Kuba M, Berdugo Vilches T, Seemann M, Hofbauer H, Thunman H. Steam gasification of biomass – Typical gas quality and operational strategies derived from industrial-scale plants. Fuel Processing Technology. 2021.212:106609.

External Link

Details

Steam gasification enables the thermochemical conversion of solid fuels into a medium calorific gas that can be utilized for the synthesis of advanced biofuels, chemicals or for heat and power production. Dual fluidized bed (DFB) gasification is at present the technology applied to realize gasification of biomass in steam environment at large scale. Few large-scale DFB gasifiers exist, and this work presents a compilation and analysis of the data and operational strategies from the six DFB gasifiers in Europe. It is shown that the technology is robust, as similar gas quality can be achieved despite the differences in reactor design and operation strategies. Reference concentrations of both gas components and tar components are provided, and correlations in the data are investigated. In all plants, adjusting the availability and accessibility to the active ash components (K and Ca) was the key to control the gas quality. The gas quality, and in particular the tar content of the gas, can conveniently be assessed by monitored the concentration of CH4 in the produced gas. The data and experience acquired from these plants provide important knowledge for the future development of the steam gasification of biomass.


Technical Reports | 2021

Supervisory control of large-scale solar thermal systems

Task 55 Towards the Integration of Large SHC Systems into DHC Networks

Gölles M, Unterberger V, Kaisermayer V, Nigitz T, Muschick D. "Supervisory control of large-scale solar thermal systems". IEA SHC FACTSHEET 55.A-D4.1. Date of Publication: 28.01.2021. https://task55.iea-shc.org/fact-sheets

External Link

Details

Overview on different approaches for supervisory control strategies,deciding on operating modes and set points for the controls of the different plants and componentsintegrated in solar thermal systems.


Technical Reports | 2021

Tailoring of the pore structures of wood pyrolysis chars for potential use in energy storage applications

Maziarka P, Sommersacher P, Wang X, Kienzl N, Retschitzegger S, Prins W, Hedin N, Ronsse F. Tailoring of the pore structures of wood pyrolysis chars for potential use in energy storage applications. Applied Energy.2021.286:116431. https://doi.org/10.1016/j.apenergy.2020.116431

External Link

Details

Char obtained from biomass pyrolysis is an eco-friendly porous carbon, which has potential use as a material for electrodes in supercapacitors. For that application, a high microporous specific surface area (SSA) is desired, as it relates to the accessible surface for an applied electrolyte. Currently, the incomplete understanding of the relation between porosity development and production parameters hinders the production of tailor-made, bio-based pyrochars for use as electrodes. Additionally, there is a problem with the low reliability in assessing textual properties for bio-based pyrochars by gas adsorption. To address the aforementioned problems, beech wood cylinders of two different lengths, with and without pre-treatment with citric acid were pyrolysed at temperatures of 300–900 °C and analysed by gas adsorption. The pyrolyzed chars were characterised with adsorption with N2 and CO2 to assess the influence of production parameters on the textual properties. The new approach in processing the gas adsorption data used in this study demonstrated the required consistency in assessing the micro- and mesoporosity. The SSA of the chars rose monotonically in the investigated range of pyrolysis temperatures. The pre-treatment with citric acid led to an enhanced SSA, and the length of the cylinders correlated with a reduced SSA. With pyrolysis at 900 °C, the micro-SSAs of samples with 10 mm increased by on average 717 ± 32 m2/g. The trends among the investigated parameters and the textual properties were rationalized and provide a sound basis for further studies of tailor-made bio-based pyrochars as electrode materials in supercapacitors.


Peer Reviewed Scientific Journals | 2021

Techno-economic optimization of islanded microgrids considering intra-hour variability

Mathiesen P, Stadler M, Kleissl J, Pecenak Z. Techno-economic optimization of islanded microgrids considering intra-hour variability. Applied Energy. 2021.304:117777.

External Link

Details

The intra-hour intermittency of solar energy and demand introduce significant design challenges for microgrids. To avoid costly energy shortfalls and mitigate outage probability, islanded microgrids must be designed with sufficient distributed energy resources (DER) to meet demand and fulfill the energy and power balance. To avoid excessive runtime, current design tools typically only utilize hourly data. As such, the variable nature of solar and demand is often overlooked. Thus, DER designed based on hourly data may result in significant energy shortfalls when deployed in real-world conditions. This research introduces a new, fast method for optimizing DER investments and performing dispatch planning to consider intra-hour variability. A novel set of constraints which operate on intra-hour data are implemented in a mixed-integer-linear-program microgrid investment optimization. Variability is represented by the single worst-case intra-hour fluctuation. This allows for fast optimization times compared to other approaches tested. Applied to a residential microgrid case study with 5-minute intra-hour resolution, this new method is shown to maintain optimality within 2% and reduce runtime by 98.2% compared to full-scale-optimizations which consider every time-step explicitly. Applicable to a variety of technologies and demand types, this method provides a general framework for incorporating intra-hour variability into microgrid design.


Conference Papers | 2021

The robust exact differentiator toolbox revisited: Filtering and discretization features.

Andritsch B, Horn M, Koch S, Niederwieser H, Wetzlinger M, Reichhartinger M. The robust exact differentiator toolbox revisited: Filtering and discretization features. in 2021 IEEE International Conference on Mechatronics, ICM 2021. Institute of Electrical and Electronics Engineers. 2021. 9385675 https://doi.org/10.1109/ICM46511.2021.9385675

External Link

Details

An extended version of a Simulink ® -block providing on-line differentiation algorithms based on discretized sliding-mode concepts is presented. Based on user-specified settings it computes estimates of the time-derivatives of the input signal up to order ten. Different discrete-time estimation algorithms as well as optional filtering properties can be selected. The paper includes an overview of the implemented algorithms, a detailed explanation of the developed Simulink ® -block and two examples. The first example illustrates the application of the toolbox in a numerical simulation environment whereas the second one shows results obtained via an electrical laboratory setup.


Peer Reviewed Scientific Journals | 2021

Ultra-low temperature water-gas shift reaction catalyzed by homogeneous Ru-complexes in a membrane reactor - membrane development and proof of concept

Logemann M, Wolf P, Loipersböck J, Schrade A, Wessling M, Haumann M. Ultra-low temperature water-gas shift reaction catalyzed by homogeneous Ru-complexes in a membrane reactor - membrane development and proof of concept. Catalysis Science and Technology. 2021.11(4):1558-1570. https://doi.org/10.1039/D0CY02111C

External Link

Details

A monolithic membrane reactor combining the supported ionic liquid-phase (SILP) catalyzed ultra-low temperature water–gas shift reaction (WGSR) with in situ product removal is presented. The SILP catalyst consists of the transition metal complex [Ru(CO)3Cl2]2 homogeneously dissolved in 1-butyl-2,3-dimethylimidazolium chloride [C4C1C1Im]Cl and supported on alumina pellets. These Ru-SILP pellets are deposited inside the channels of a silicon carbide monolith. The resulting monolithic catalyst is very active and stable in the WGSR in the temperature range between 120 and 160 °C, thereby making full use of the high equilibrium conversion at these conditions. A facilitated transport membrane was coated onto the smooth outside of the SiC monolith to allow preferential removal of CO2 compared to H2. The proof of this concept has been shown under industrially relevant conditions using a biogas feed. These results demonstrate, for the first time, the combination of homogeneous SILP catalyzed WGSR with enhanced in situ removal of one of the products (here: CO2) via facilitated transport membrane separation.