Publications
Peer reviewed papers | 2020
Increased efficiency of dual fluidized bed plants via a novel control strategy
Nigitz T, Gölles M, Aichernig C, Schneider S, Hofbauer H, Horn M. Increased efficiency of dual fluidized bed plants via a novel control strategy. Biomass & Bioenergy. 2020 Okt;141. 105688. https://doi.org/10.1016/j.biombioe.2020.105688
Industrial plants using DFB biomass gasification are on the verge of profitability. These plants should be operated more economically in order to support the industrial applications for renewable technologies of this kind. Since some parts of such plants are typically difficult to control, a state-of-the-art control strategy is analyzed here in the context of its potential for increased economic efficiency. The DFB gasification plant “HGA Senden” in Ulm, Germany is considered on an exemplary basis here. A process analysis reveals a high potential in the synchronization of product gas generation and utilization. At the present time a relevant surplus of product gas is burned in an auxiliary boiler for synchronization purposes and regular manual adjustments at the fuel feed are necessary by the plant operators. For this synchronization a novel control strategy is developed that actuates the auxiliary boiler and the fuel feed simultaneously. The novel control strategy was experimentally validated for a period of over one month. Due to this long-term evaluation the fuel consumption was reduced by 5% and the manual adjustments of the fuel feed that were necessary on average every 30min were eliminated. As a result DFB gasification plants can be operated more economically by applying the novel control strategy for synchronization of product gas generation and utilization.
Conference presentations and posters | 2020
Individiual heat management in the living room
Schwabl M. Individiual heat management in the living room. 6th Central European Biomass Conference (oral presentation. 2020.
Conference presentations and posters | 2020
Individual heat management in the living room
Schwabl M. Individual heat management in the living room. 6th Central European Biomass Conference, 22-24 January 2020, Graz.
Conference presentations and posters | 2020
Influence of ash forming elements from biogenous residues on fluidized bed conversion processes
Fürsatz K, Influence of ash forming elements from biogenous residues on fluidized bed conversion processes. 6th Central Eurpean Biomass Conference, 22-24 January 2020, Graz.
Peer reviewed papers | 2020
Influence of bed materials on the performance of the Nong Bua dual fluidized bed gasification power plant in Thailand
Siriwongrungson V, Hongrapipat J, Kuba M, Rauch R, Pang S, Thaveesri J, Messner M, Hofbauer H. Influence of bed materials on the performance of the Nong Bua dual fluidized bed gasification power plant in Thailand. Biomass Conversion and Biorefinery. 2020;
Bed materials and their catalytic activity are two main parameters that affect the performance of the dual fluidized bed (DFB) gasification system in terms of product gas composition and tar levels. Two sources of bed materials were used for the operation of a commercial DFB gasification system in Thailand, using woodchips as a biomass feedstock. One source of the bed materials was the calcined olivine which had been used in the Gussing Plant, Austria, and the other activated bed material was a mixture of fresh Chinese olivine and used Austrian olivine with additives of biomass ash, calcium hydroxide and dolomite. These bed materials were collected and analysed for morphological and chemical composition using a scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray fluorescence spectroscopy (XRF). The product gas was cleaned in a scrubber to remove tars, from which the samples were collected for gravimetric tar analysis. Its composition data was automatically recorded at the operation site before it entered the gas engine. From the SEM, EDS and XRF analyses, calcium-rich layers around the bed materials were observed on the activated bed material. The inner layers of bed materials collected were homogeneous. Biomass ash, which was generally added to the bed materials, had significant calcium and potassium content. These calcium-rich layers of the bed materials, from the calcium hydroxide, biomass ash and dolomite, influenced system performance, which was determined by observing lower tar concentration and higher hydrogen concentration in the product gas.
Conference presentations and posters | 2020
Integrating steam gasification into established infrastructure in the pulp and paper industry
Karl T, Integrating steam gasification into established infrastructure in the pulp and paper industry. 6th Central European Biomass Conference, 22-24 January 2020, Graz.
Conference presentations and posters | 2020
Integration von Biogas in Bioprozesse - Nährstoffrückführung und Energiegewinnung
Drosg B. Integration von Biogas in Bioprozesse - Nährstoffrückführung und Energiegewinnung. 6th Central European Biomass Conference (oral presentation). 2020.
Peer reviewed papers | 2020
Investigation of solid oxide fuel cell operation with synthetic biomass gasification product gases as a basis for enhancing its performance
Pongratz G, Subotić V, Schroettner H, Stoeckl B, Hochenauer C, Anca-Couce A, Scharler R. Investigation of solid oxide fuel cell operation with synthetic biomass gasification product gases as a basis for enhancing its performance. Biomass Conversion and Biorefinery.2020.
Solid oxide fuel cells represent a promising technology to increase the electrical efficiency of biomass-based combined-heat-power systems in comparison to state-of-the-art gas engines, additionally providing high temperature heat. To identify favorable fuel gas compositions for an efficient coupling with gasifiers at low degradation risk is of major importance to ensure stability, reliability, and durability of the systems used, thus increasing attractiveness of electricity production from biomass. Therefore, this study presents a comprehensive analysis on the influence of main gas components from biomass gasification on the performance and efficiency of a cell relevant for real application. An industrial-size electrolyte supported single cell with nickel/gadolinium-doped ceria anode was selected showing high potential for gasifier-solid oxide fuel cell systems. Beneficial gas component ratios enhancing the power output and electric efficiency are proposed based on the experimental study performed. Furthermore, the degradation stability of a SOFC fueled with a synthetic product gas representing steam gasification of woody biomass was investigated. After 500 h of operation under load at a steam-to-carbon ratio of 2.25 in the fuel gas, no performance or anode degradation could be detected.
Reports | 2020
Investigation of the formation of coherent ash residues during fluidized bed gasification of wheat straw lignin
Priscak J, Fürsatz K, Kuba M, Skoglund N, Benedikt F, Hofbauer H. Investigation of the formation of coherent ash residues during fluidized bed gasification of wheat straw lignin. Energies. 2020;13(15):3935:
Thermal conversion of ash-rich fuels in fluidized bed systems is often associated with extensive operation problems caused by the high amount of reactive inorganics. This paper investigates the behavior of wheat straw lignin—a potential renewable fuel for dual fluidized bed gasification. The formation of coherent ash residues and its impact on the operation performance has been investigated and was supported by thermochemical equilibrium calculations in FactSage 7.3. The formation of those ash residues, and their subsequent accumulation on the surface of the fluidized bed, causes temperature and pressure fluctuations, which negatively influence the steady-state operation of the fluidized bed process. This paper presents a detailed characterization of the coherent ash residues, which consists mostly of silica and partially molten alkali silicates. Furthermore, the paper gives insights into the formation of these ash residues, dependent on the fuel pretreatment (pelletizing) of the wheat straw lignin, which increases their stability compared to the utilization of non-pelletized fuel.
Conference presentations and posters | 2020
Lessons Learned from Alternative Fuels Experience
Sonnleitner A, Bacovsky D. Lessons Learned from Alternative Fuels Experience. 6th Central European Biomass Conference, 22-24 January 2020, Graz
Decarbonising the transport sector is one of the key goals of national and international climate change mitigation policies. Rapid and effective market introduction of alternative fuels and vehicles is needed to reduce greenhouse gas emissions from the existing vehicle fleet as soon as possible and as extensively as possible.
However, experience with various attempts to introduce alternative fuels and vehicles to the market has shown that this is not always successful. Several participants in the Advanced Motor Fuels Technology Collaboration Program (AMF TCP) have therefore proposed an annex on lessons learned from market launch attempts.
The circumstances of the introduction of advanced motor fuels and the factors influencing their commercialization (resource, transport infrastructure, economic situation, etc.) in each country are different, and it is difficult to universally evaluate an advanced motor fuels policy.
For this reason, this annex clarifies the background and objective of the central government and local governments’ introduction policy and specific measures on advanced motor fuels in the past, and summarizes the effectiveness, successes, and lessons learned regarding the promotion of advanced motor fuels in each individual case of introduction and commercialization.
The participating countries Austria, China, Finland, Japan, Sweden and the USA conduct analyses of their own case studies on past market introductions taking into account specific framework conditions for each country:
Austria: low blend biofuels, CNG-driven cars, prevented introduction of E10
China: Ethanol
Finland: E10, E85, drop-in components for diesel, biogas
Japan: FAME, natural gas
Sweden: reduction obligation, high blend biofuels and biogas, E85
USA: low and high level blends of ethanol, methanol and FFVs, natural gas
The sum of the case studies is analysed and key drivers of successes and key barriers of failures are identified. Preliminary results from this work will be discussed in an expert workshop in 2020, and then the final lessons learned and recommendations will be derived. Policy briefs including key messages, best practices, lessons learned and avoided mistakes related to advanced motor fuels covering both fuels and related vehicle technologies will be developed and provided as recommendations for political decision makers.
Conference presentations and posters | 2020
Long-term validation of a new modular approach for CO-lambda-optimization
Zemann C, Hammer F, Gölles M, Horn M. Long-term validation of a new modular approach for CO-lambda-optimization. 28th European Biomass Conference & Exhibition. 6-9 July 2020.
Long Term Validation of a New Modular Approach for CO-Lambda-Optimization
The optimization of existing biomass boilers in terms of efficiency and pollutant emissions is essential for their continued economic and ecological viability in future energy systems. These improvements are typically achieved by constructive changes which are expensive and can require prolonged downtimes. A well-known method for optimizing biomass boilers in terms of efficiency and pollutant emissions without constructive changes is the so-called CO-lambda-optimization. While multiple approaches for CO-lambda-optimization have been presented in literature, they are still rarely used in real biomass boilers. This is partly due to the fact that these approaches do not meet the requirements associated with their long-term operation in real biomass boilers. This contribution presents a new and modular approach for the CO-lambda-optimization which is specifically designed to meet these requirements. Particular emphasis in this contribution is laid on the long-term validation of the presented approach for CO-lambda-optimization at a medium-scale fixed-bed biomass boiler.
Conference presentations and posters | 2020
Long-term verification of a new modular method for CO-lambda-optimisation
Zemann C, Hammer F, Gölles M. Long-term verification of a new modular method for CO-lambda-optimisation. 6th Central European Biomass Conference CEBC 2020 (Oral Presentation). 2020.
Conference presentations and posters | 2020
Mapping bioenergy retrofitting in Europe´s industry - BIOFIT first results
Reumerman P, Rutz D, Janssen R, Bacovsky D, Gröngröft A, Saastamoinen H, Mäki E, Karampinis E. Mapping bioenergy retrofitting in Europe´s industry - BIOFIT first results. 28th European Biomass Conference and Exhibition (poster) 2020.
Conference presentations and posters | 2020
Microgrid Lab 100 % - R&D project for decentralized energy supply with biomass and other Distributed energy Resources
Aigenbauer S. Microgrid Lab 100 % - R&D project for decentralized energy supply with biomass and other Distributed energy Resources. 6th Central European Biomass Conference, 22-24 January 2020, Graz.
Conference presentations and posters | 2020
Microgrid Lab 100% Testbed for the development of control algorithms for microgrids
Aigenbauer S, Microgrid Lab 100% Testbed for the development of control algorithms for microgrids. 6th Central European Biomass Conference, 22-24 January 2020, Graz.
Microgrids are local energy grids that (partly) cover their own energy demand. Decentralized renewable energy sources reduce energy costs and CO2 emissions in a microgrid. Various storage systems and strategies like load shift are employed to balance the volatile energy flows. Intelligent controllers improve the energy management of the micro and smart grids. BEST GmbH is the industry leader when it comes to biomass control systems in Austria. Thus, BEST GmbH is already combining this knowledge within the “OptEnGrid” (FFG 858815) and “Grundlagenforschung Smart- und Microgrid“ (K3-F-755/001-2017) research projects, which are based on the leading microgrid optimization tool DER-CAM from Lawrence Berkeley National Laboratory at the University of California. These two BEST GmbH basic research projects form the basis for new innovative microgrid controller concepts which will be implemented and tested in the presented Microgrid Research Lab in Wieselburg (project Microgrid Lab 100%). The Microgrid Research Lab will include the Technology- und Reseach Centre (tfz) Wieselburg-Land and the new firefighting department next to the tfz.
Conference presentations and posters | 2020
Microgrid Lab – R&D project for 100% decentralized energy supply with biomass and other Distributed Energy Resources (DER)
Aigenbauer S, Zellinger M, Stadler M. Microgrid Lab – R&D project for 100% decentralized energy supply with biomass and other Distributed Energy Resources (DER). 6th Central European Biomass Conference (poster). 2020.
Microgrids, a research topic within the smart grids area, build on close relationships between demand and supply and will create a 170 Mrd. € market potential in 2020[1]. These individual markets are characterized by different technologies in use. For example, biogas will play a key role in microgrids in Asia compared to Photovoltaics, Combined heat and Power (CHP), as well as storage technologies in North America. All these different technologies need to be coordinated and controlled. BIOENERGY2020+ GmbH is the industry leader when it comes to biomass control systems in Austria. Thus, BIOENERGY2020+ GmbH is already combining this knowledge within the OptEnGrid and “Grundlagenforschung Smart- und Microgrid“ (K3-F-755/001-2017) research projects, which are based on the leading microgrid optimization tool DER-CAM from Lawrence Berkeley National Laboratory at the University of California in Berkeley. These two BIOENERGY2020+ GmbH basic research projects constitute the basis for new innovative microgrid controller concepts and these new microgrid controller will be implemented and tested in the suggested Microgrid Research Lab in Wieselburg. The Microgrid Research Lab will include the Technology- und Reseach Centre (tfz) Wieselburg-Land and the new firefighting department next to the tfz.
Peer reviewed papers | 2020
Model-based control of hydraulic heat distribution systems — Theory and application
Unterberger V, Muschick D, Loidl A, Poms U, Gölles M, Horn M. Model-based control of hydraulic heat distribution systems — Theory and application. Control Engineering Practice. 2020;2020(101).104464. https://doi.org/10.1016/j.conengprac.2020.104464
With the share of renewable energy sources increasing in heating and hot water applications, the role of hydraulic heat distribution systems is becoming more and more important. This is due to the fact that in order to compensate for the often fluctuating behaviour of the renewables a flexible heat transfer must be ensured by these distribution systems while also taking the optimal operating conditions (mass flow, temperature) of the individual components into consideration. This demanding task can be accomplished by independently controlling the two physical quantities mass flow and temperature. However, since there exists an intrinsic nonlinear coupling between these quantities this challenge cannot be handled sufficiently by decoupled linear PI controllers which are currently state-of-the-art in the heating sector. For this reason this paper presents a model-based control strategy which allows a decoupled control of mass flow and temperature. The strategy is based on a systematic design approach from models described in this contribution, which are validated by commercially available components from which most of them can be parametrized by the data sheet. The control strategy is designed for a typical hydraulic configuration used in heating systems, which will allow the accurate tracking of the desired trajectories for mass flows, temperatures and consequently heat flows. The controllers are validated experimentally and compared to well-tuned state-of-the-art (PI) controllers in order to illustrate their superiority and prove their decoupling of the control of mass flow and temperature in real world applications.
Conference presentations and posters | 2020
Model-based estimation of the flue gas mass flow in biomass furnaces
Niederwieser H. Model-based estimation of the flue gas mass flow in biomass furnaces. 6th Central European Biomass Conference. 22-24 January 2020, Graz.
Other Publications | 2020
Modern control strategies for biomass combustion systems in residential heating systems
Gölles M, Zemann C. Modern control strategies for biomass combustion systems in residential heating systems. At 6th Central European Biomass Conference IEA-Workshop: TASK 32. Oral Presenation. 23.01.2020.
Conference presentations and posters | 2020
Modification of ash properties in fixed bed combustion systems
Sommersacher P, Retschitzegger S. Modification of ash properties in fixed bed combustion systems. 6th Central European Biomass Conference, 22-24 January 2020, Graz.
Peer reviewed papers | 2020
Multi-stage model for the release of potassium in single particle biomass combustion
Anca-Couce A, Sommersacher P, Hochenauer C, Scharler R. Multi-stage model for the release of potassium in single particle biomass. Fuel. 2020:280:118569.
The release of potassium during biomass combustion leads to several problems as the emissions of particle matter or formation of deposits. K release is mainly described in literature in a qualitative way and this work aims to develop a simplified model to quantitatively describe it at different stages. The proposed model has 4 reactions and 5 solid species, describing K release in 3 steps; during pyrolysis, KCl evaporation and carbonate dissociation. This release model is coupled into a single particle model and successfully validated with experiments conducted in a single particle reactor with spruce, straw and Miscanthus pellets at different temperatures. The model employs same kinetic parameters for the reactions in all cases, while different product compositions of the reactions are employed for each fuel, which is attributed to differences in composition. The proposed model correctly predicts the online release at different stages during conversion as well as the final release for each case.
Conference presentations and posters | 2020
NOx Modelling and Emission Reduction
Eßl M, NOx Modelling and Emission Reduction. 6th Central European Biomass Conference, 22-24 January 2020, Graz.
Other papers | 2020
Numerical simulation of fuel nitrogen conversion and NOx emissions in biomass boilers with advanced air staging technology
Essl M, Schulze K, Scharler R. Numerical simulation of fuel nitrogen conversion and NOx emissions in biomass boilers with advanced air staging technology. 3RD DOCTORAL COLLOQUIUM BIOENERGY. 2020
The increased biomass utilization leads to the need of an efficient and flexible usage of available sources. Therefore, it is necessary to combust low-cost biogenic residues, which inherently have higher nitrogen contents that lead to increased NOx emissions. In order to tackle this issue a new combustion technology with double air staging and flue gas recirculation is under development. The technology also features an increased fuel bed height and very low oxygen concentrations in the fuel bed to reduce fuel bed temperatures. This work focuses on the CFD simulation of the formation and reduction of NOx emissions of in a small scale boiler (35 kWth). Compared to previously applied models, major modification concerning the heat and mass transfer in the fuel bed as well as the subsequent conversion in the freeboard were made. The fuel bed is modelled via representative fuel particles with a Lagrangian approach and a thermally thick particle model considering intra-particle
gradients. Due to the increased fuel bed height and the relatively low oxygen concentration the formation and cracking of tars has to be considered in the simulation. This heavily influences the formation and reduction of NOx and its precursors. The fuel bound nitrogen is released via the particle model in the form of NO during char burnout and via a lumped tar species during pyrolysis. The cracking of the lumped tar species is modelled via two global gas phase reactions that releases the NOx precursors NH3 and HCN. The cracking reactions are added to a skeletal reaction mechanism with 28 species and 102 reactions that includes the fate of the N species. The simulation results are compared to experimental data from test runs with spruce wood chips and Miscanthus pellets as fuels. The comparison showed good agreement for the test runs with wood chips, where the temperature distribution inside the fuel bed and the released species above the fuel bed were predicted well. The test runs with Miscanthus showed a greater deviation between the measured and simulated values. For both fuels the NOx reduction that was experimentally observed in the secondary combustion zone could not be predicted with reasonable agreement. Therefore, it is necessary to further investigate the cracking of the tars and the subsequent formation of the NOx precursors. The presented work forms the basis for further improvements of the numerical models and subsequently the optimization of the new technology.
Peer reviewed papers | 2020
Off-gassing reduction of stored wood pellets by adding acetylsalicylic acid
Sedlmayer I, Bauer-Emhofer W, Haslinger W, Hofbauer H, Schmidl C, Wopienka E. Off-gassing reduction of stored wood pellets by adding acetylsalicylic acid. Fuel Processing Technology 2020.198:106218.
During transportation and storage of wood pellets various gases are formed leading to toxic atmosphere. Various influencing factors and measures reducing off-gassing have already been investigated. The present study aims at applying an antioxidant, acetylsalicylic acid (ASA), to reduce off-gassing from wood pellets by lowering wood extractives oxidation. Therefore, acetylsalicylic acid was applied in industrial and laboratory pelletizing processes. Pine and spruce sawdust (ratio 1:1) were pelletized with adding 0-0.8% (m/m) ASA. Glass flasks measurements confirmed off-gassing reduction by adding ASA for all wood pellets investigated.The biggest effect was achieved by adding 0.8% (m/m) ASA in the industrial pelletizing experiments where the emission of volatile organic compounds (VOCtot) was reduced by 82% and a reduction of carbon monoxide (CO) and carbon dioxide (CO2) emissions by 70% and 51%, respectively, could be achieved. Even an addition of 0.05% (m/m) ASA led to off-gassing reduction by >10%. A six week storage experiment to investigate the long-term effectivity of ASA addition revealed, that antioxidant addition was effective in reducing CO-, CO2- and VOCtot-release, especially during the first four weeks of the storage experiment, after which time the relative reduction effect was significantly decreased.
Peer reviewed papers | 2020
Online determination of potassium and sodium release behaviour during single particle biomass combustion by FES and ICP-MS
Paulauskas R, Striūgas N, Sadeckas M, Sommersacher P, Retschitzegger S, Kienzl N. Online determination of potassium and sodium release behaviour during single particle biomass combustion by FES and ICP-MS. Science of the Total Environment. 2020;746:141162.
This study focuses on the determination of alkali release from wood and straw pellets during combustion. The aim is to expand the knowledge on the K and Na release behaviour and to adopt chemiluminescence-based sensors for online monitoring of alkali detection which can be applied for the prevention of fouling formation in low quality biomass combustion plants. Flame emission spectrometry (FES) was used for optical detection of chemiluminescence spectra of K and Na using optical bandpass filters mounted on an ICCD (Intensified Charge Coupled Device) camera. FES data were verified by additional experiments with a single particle reactor (SPR) coupled with an inductively coupled plasma mass spectrometer (ICP-MS). Using both techniques, the release profiles of K and Na during a single pellet combustion at 1000 °C were determined and obtained K* and Na* emission intensities directly correlated with the results from the ICP-MS. It was determined that the emission intensity of alkali radicals depends on alkali concentrations in the samples and K and Na radical emission intensities increase with increasing alkali amounts in the samples. The ICP-MS data revealed that the release of K and Na mainly takes place during the stage of devolatilization. During devolatilization, almost all potassium and sodium are released from wood samples, while only 65–90% of K and 74–90% of Na are released from straw samples. Based on the results, the flame emission spectroscopy technique is capable to fully detect released alkali metals in the gas phase during combustion and proves a possibility to use flame emission sensors for monitoring the release of alkali species from biomass during combustion processes.