Publications
Other papers | 2018
Adaptive Methods for Energy Forecasting of Production and Demand of Solar Assisted Heating Systems
Unterberger V, Nigitz T, Luzzu M, Muschick D, Gölles M. Adaptive Methods for Energy Forecasting of Production and Demand of Solar Assisted Heating Systems., Proceeding of Papers Vol1, p170-181 International conference on time series and forecasting, Granada, Spain, September 19-21, 2018.
Peer reviewed papers | 2018
Adsorptive on-board desulfurization over multiple cycles for fuel-cell-based auxiliary power units operated by different types of fuels
Neubauer, R, Weinlaender C, Kienzl N, Bitschnau B, Schroettner H, Hochenauer C. Adsorptive on-board desulfurization over multiple cycles for fuel-cell-based auxiliary power units operated by different types of fuels. Journal of Power Sources. 1 May 2018, 385: 45-54.
On-board desulfurization is essential to operate fuel-cell-based auxiliary power units (APU) with commercial fuels. In this work, both (i) on-board desulfurization and (ii) on-board regeneration performance of Ag-Al2O3 adsorbent is investigated in a comprehensive manner. The herein investigated regeneration strategy uses hot APU off-gas as the regeneration medium and requires no additional reagents, tanks, nor heat exchangers and thus has remarkable advantages in comparison to state-of-the-art regeneration strategies. The results for (i) show high desulfurization performance of Ag-Al2O3 under all relevant operating conditions and specify the influence of individual operation parameters and the combination of them, which have not yet been quantified. The system integrated regeneration strategy (ii) shows excellent regeneration performance recovering 100% of the initial adsorption capacity for all investigated types of fuels and sulfur heterocycles. Even the adsorption capacity of the most challenging dibenzothiophene in terms of regeneration is restored to 100% over 14 cycles of operation. Subsequent material analyses proved the thermal and chemical stability of all relevant adsorption sites under APU off-gas conditions. To the best of our knowledge, this is the first time 100% regeneration after adsorption of dibenzothiophene is reported over 14 cycles of operation for thermal regeneration in oxidizing atmospheres.
Other papers | 2018
Assessment of the Behaviour of a Commercial Gasification Plant During Load Modulation and Feedstock Moisture Variation: Preliminary results of the "Flexi-Fuel-Gas-Control" Project
Antolini D, Hollenstein C, Martini S, Patuzzi F, Zemann C, Felsberger W, Baratieri M, Gölles M. Assessment of the Behaviour of a Commercial Gasification Plant During Load Modulation and Feedstock Moisture Variation: Preliminary results of the "Flexi-Fuel-Gas-Control" Project. 7th International conference on Engineering for Waste and Biomass Valorisation. 2.-5. July 2018. Prague: Czech Republic.
Peer reviewed papers | 2018
Catalytic Efficiency of Oxidizing Honeycomb Catalysts Integrated in Firewood Stoves Evaluated by a Novel Measuring Methodology under Real-Life Operating Conditions
Reichert G, Schmidl C, Haslinger W, Stressler H, Sturmlechner R, Schwabl M, Wöhler M, Hochenauer C. Catalytic Efficiency of Oxidizing Honeycomb Catalysts Integrated in Firewood Stoves Evaluated by a Novel Measuring Methodology under Real-Life Operating Conditions. Renewable Energy, March 2018;117:300-313.
Catalytic systems integrated in firewood stoves represent a potential secondary measure for emission reduction. However, the evaluation of catalytic efficiency is challenging since measurements, especially for PM emissions, upstream an integrated catalyst are not possible. Therefore, a special test facility, called “DemoCat”, was constructed which enabled parallel measurements in catalytically treated and untreated flue gas. The catalytic efficiency for CO, OGC and PM emissions was investigated under real-life operating conditions including ignition and preheating. The results confirmed a significant emission reduction potential (CO: > 95%, OGC: > 60%, PM: ∼30%). The conversion rates of CO and OGC emissions correlated with the space velocity and the coated area of honeycomb carriers which represent key parameters for the integration design. A quick response of the catalytic effect of around 5–12 min after ignition was observed when reaching 250 °C flue gas temperature at the catalyst. Most effective CO and OGC emission conversion was evident during the start-up and burn-out phase of a firewood batch. This reveals an important synergy for primary optimization which focuses particularly on the stretched intermediate phase of a combustion batch. The catalytic effect on PM emissions, especially on chemical composition, needs further investigations.
Reports | 2018
CO2-Einsparungskosten
Analyse der Sektoren Mobilität und Wärmebereitstellung
Strasser C, Sturmlechner R, Schwarz M. CO2-Einsparungskosten.2018
Dieser Bericht bietet eine ERhebung dero CO2e-Einsparungskosten außerhalb des ETS-Handels für den Bereich der Mobilität sowie der Wärmebereitstellung im häuslichen Sektor und Fern- und Nahwärme.
Peer reviewed papers | 2018
Cyanobacteria Biorefinery — Production of poly(3-hydroxybutyrate) with Synechocystis salina and utilisation of residual biomass
Meixner K, Kovalcik A, Sykacek E, Gruber-Brunhumer M, Zeilinger W, Markl K, Haas C, Fritz I, Mundigler N, Stelzer F, Neureiter M, Fuchs W, Drosg B. Cyanobacteria Biorefinery — Production of poly(3-hydroxybutyrate) with Synechocystis salina and utilisation of residual biomass. Journal of Biotechnology. 10 January 2018;265(10): 46-53
Reports | 2018
Deliverable 7.1 - Technology Assessment Research Infrastructures
Safi C, Mulder W, Kienzl N, Retschitzegger S, et al.. Deliverable 7.1 - Technology Assessment Research Infrastructures. BRISK II - Deliverable. October 2018.
Peer reviewed papers | 2018
Determination of off-gassing and self-heating potential of wood pellets - Method comparison and correlation analysis
Sedlmayer I, Arshadi M, Haslinger W, Hofbauer H, Larsson I, Lönnermark A, Pollex A, Schmidl C, Stelte W, Wopienka E, Bauer-Emhofer W. Determination of off-gassing and self-heating potential of wood pellets - Method comparison and correlation analysis. Fuel 2018;234:894-903.
Several methods for identifying the phenomena of self-heating and off-gassing during production, transportation and storage of wood pellets have been developed in recent years. Research focused on the exploration of the underlying mechanisms, influencing factors or the quantification of self-heating or off-gassing tendencies. The present study aims at identifying a clear correlation between self-heating and off-gassing. Thus, different methods for determining self-heating and off-gassing potentials of wood pellets are compared. Therefore, eleven wood pellet batches from the European market were analyzed. For this investigation, three methods for the determination of self-heating, like isothermal calorimetry, oxi-press and thermogravimetric analysis, and four methods for off-gassing, like volatile organic compound (VOC) emissions measurements, gas phase analysis of stored pellets in a closed container by offline and by glass flask method and determination of fatty and resin acids content, were performed. Results were ranked according to the self-heating and off-gassing tendency providing a common overview of the analyzed pellets batches. Relations between different methods were investigated by Spearman’s correlation coefficient. Evaluation of the results revealed an equal suitability of offline and glass flask methods to predict off-gassing tendency and indicated a very significant correlation with isothermal calorimetry for the identification of self-heating tendency. The thermogravimetric analysis as well as the fatty and resin acids determination proved to be insufficient for the exclusive assessment of self-heating and off-gassing tendency, respectively.
Peer reviewed papers | 2018
Development of a compact technique to measure benzo(a)pyrene emissions from residential wood combustion, and subsequent testing in six modern wood boilers
Klauser F, Schwabl M, Kistler M, Sedlmayer I, Kienzl N, Weissinger A, Schmidl C, Haslinger W, Kasper-Giebl A. Development of a compact technique to measure benzo(a)pyrene emissions from residential wood combustion, and subsequent testing in six modern wood boilers. Biomass and Bioenergy. April 2018, 111: 288-300.
Polycyclic aromatic hydrocarbons (PAHs) are emitted during incomplete combustion of organic materials and are particularly harmful to human health. As a representative of PAHs, Benzo(a)pyrene (BaP) is restricted by the European Union to an annual average value of 1 ng m−3 in ambient air. This threshold is significantly exceeded during the heating season in various regions. Residential wood combustion furnaces are considered to be a major source for BaP pollution.
In this research, a compact sampling method for BaP measurements was validated. Afterwards, the method was used to assess emissions from modern automatic wood boilers, in order to obtain a detailed knowledge of BaP emissions from residential wood combustion furnaces.
It was demonstrated that, for a wide range of BaP concentrations, sampling from the hot flue gas of residential wood combustors can be carried out effectively over a simple quartz filter, after proper dilution with cold purified air. Highest BaP emissions from the investigated boilers occurred during start, with a mean concentration value of 6.3 μg m-3. All values refer to standard conditions (273.15 °C, 100 kPa) and to an O2 volume fraction of 13% in the dry flue gas. The lowest concentrations occurred during full load operation (mean value 73 ng m-3 at STP). It was found that, amongst all flue gas compounds analysed, elemental carbon is the parameter most closely related to BaP. This work demonstrates, at optimal operating conditions, modern automatic wood boilers have potentially lowest BaP emission concentrations amongst residential wood combustion furnaces.
Peer reviewed papers | 2018
Emission characterisation of modern wood stoves under real-life oriented operating conditions
Klauser F, Carlon E, Kistler M, Schmidl C, Schwabl M, Sturmlechner R, Haslinger W, Kasper-Giebl A. Emission characterisation of modern wood stoves under real-life oriented operating conditions. Atmospheric Environment 2018;192:257-266.
The quality of emission inventories substantially bases on the reliability of used emission factors (EFs). In this work EFs were studied according to recently published characterization methods, called “beReal”, reflecting real life operating conditions in Europe. EFs for four pellet stoves and nine firewood appliances (roomheaters and cookers) of carbon monoxide (CO), organic gaseous compounds (OGC), nitrogen oxides, total solid particles (TSP) of hot and of diluted flue gas, total, elemental and organic carbon (TC, EC, OC) and benzo(a)pyrene were determined.
CO, OGC, TSPs, TC, EC and OC emissions from firewood appliances were significantly higher than for pellet stoves, indicating the high relevance of classifying appliances according to the operation type. TSP sampled from diluted flue gas at 40 °C (28 mg MJ−1 to 271 mg MJ−1 based on fuel input) was higher than TSP sampled from hot flue gas (21 mg MJ−1 to 70 mg MJ−1). This reveals the high relevance of sampling conditions for the determination of real life emissions. Benzo(a)pyrene emissions scattered over a wide range (0.5 μg MJ−1 to 129.8 μg MJ−1) indicating high sensitivity to unfavorable combustion conditions. Therefore a higher number of experimentally determined emissions factors could improve the reliability of EFs for inventories. CO emissions measured in beReal tests were substantially higher than official type tests, thus showing that type testing results provide limited information for the determination of real life emissions.
A systematic evaluation of EFs with defined real life methods like beReal would substantially improve the reliability of emission inventories.
Peer reviewed papers | 2018
Evaluation of the Potential for Efficiency Increase by the Application of Model-Based Control Strategies in Large-Scale Solar Thermal Plants
Unterberger V, Lichtenegger K, Innerhofer P, Gerardts B, Gölles M. Evaluation of the Potential for Efficiency Increase by the Application of Model-Based Control Strategies in Large-Scale Solar Thermal Plants. International Journal of Contemporary ENERGY. 2018; 4(1): 549-559.
Peer reviewed papers | 2018
Experimental demonstration and validation of hydrogen production based on gasification of lignocellulosic feedstock
Loipersböck J, Luisser M, Müller S, Hofbauer H, Rauch R. Experimental demonstration and validation of hydrogen production based on gasification of lignocellulosic feedstock. 2018.2:61-73.
The worldwide production of hydrogen in 2010 was estimated to be approximately 50 Mt/a, mostly based on fossil fuels. By using lignocellulosic feedstock, an environmentally friendly hydrogen production route can be established. A flow sheet simulation for a biomass based hydrogen production plant was published in a previous work. The plant layout consisted of a dual fluidized bed gasifier including a gas cooler and a dust filter. Subsequently, a water gas shift plant was installed to enhance the hydrogen yield and a biodiesel scrubber was used to remove tars and water from the syngas. CO2 was removed and the gas was compressed to separate hydrogen in a pressure swing adsorption. A steam reformer was used to reform the hydrocarbon-rich tail gas of the pressure swing adsorption and increase the hydrogen yield. Based on this work, a research facility was erected and the results were validated. These results were used to upscale the research plant to a 10 MW fuel feed scale. A validation of the system showed a chemical efficiency of the system of 60% and an overall efficiency of 55%, which indicates the high potential of this technology
Peer reviewed papers | 2018
Experimental parametric study in industrial-scale dual fluid bed gasification of woody biomass: Influences on product gas and tar composition
Kuba M, Hofbauer H. Experimental parametric study in industrial-scale dual fluid bed gasification of woody biomass: Influences on product gas and tar composition. Biomass and Bioenergy. 2018, 115: 35-44.
Tar measurements at two industrial-scale DFB gasification plants showed clear trends regarding the influence of the above mentioned parameters on the product gas and tar composition. Since data was gathered during tar measurement campaigns over the course of four years the density of information in industrial-scale was increased significantly. As different operation points, e.g. different capacities of the power plant, are included in the consideration, the verisimilitude is comparably high.
It was shown, that reducing the operation temperature leads to an increase of the total tar amounts. However, while the concentration of the tar compounds benzofuran, styrene, and 1H-indene was increased when lowering the temperature, the concentration of naphthalene was decreased. These results were in good correlation with previous work from lab-scale investigations. The temperature did not have a measureable influence on the concentration of the tar compounds anthracene and ace-naphthalene, which was against former experience from lab-scale. The concentration of those larger PAHs anthracene and ace-naphthalene was more dominantly influenced by the bed height in the gasification reactor. Increasing the bed height led to a decrease of the concentration of larger PAHs while it did not have a distinctive influence on benzofuran, styrene, and 1H-indene.
The reactor design was identified as an influencing effect, due to the presence of a moving bed section above the inclined wall, where no fluidization is ensured. Thus, additional fluidization nozzles were installed to reduce the effect of the inclined wall. Finally, two operation points for optimized long-term operation were derived from the results.
Peer reviewed papers | 2018
Experiments and modelling of NOx precursors release (NH3 and HCN) in fixed-bed biomass combustion conditions
Anca-Couce A, Sommersacher P, Evic N, Mehrabian R, Scharler R. Experiments and modelling of NOx precursors release (NH3 and HCN) in fixed-bed biomass combustion conditions. Fuel. 2018, 222: 529-537.
There is a need to reduce NOx emissions, which can only be achieved through a detailed understanding of the mechanisms for their formation and reduction. In this work the release of the NOx precursors, NH3 and HCN, for different fuels is experimentally analysed and modelled in typical fixed-bed combustion conditions. It is shown that NH3 and HCN are released during the main devolatilization phase and the NH3/HCN ratio increases for fuels with a higher nitrogen content. A simplified two-steps model for their release is presented. The model can predict with a reasonable accuracy the release for fuels with a low nitrogen content, however deviations are present for fuels with a high nitrogen content, which probably arise due to a reduction of NH3 and HCN taking place already in the bed.
Peer reviewed papers | 2018
Hydrogen production within a polygeneration concept based on dual fluidized bed biomass steam gasification
Kraussler M, Binder M, Schindler P, Hofbauer H. Hydrogen production within a polygeneration concept based on dual fluidized bed biomass steam gasification. Biomass and Bioenergy. April 2018, 111: 320-329.
Dual fluidized bed biomass steam gasification generates a high calorific, practically nitrogen-free product gas with a volumetric H2 content of about 40%. Therefore, this could be a promising route for a polygeneration concept aiming at the production of valuable gases (for example H2), electricity, and heat. In this paper, a lab-scale process chain, based on state of the art unit operations, which processed a tar-rich product gas from a commercial dual fluidized bed biomass steam gasification plant, is investigated regarding H2 production within a polygeneration concept. The lab-scale process chain employed a water gas shift step, two gas scrubbing steps, and a pressure swing adsorption step. During the investigations, a volumetric H2 concentration of 99.9% with a specific H2 production of 30 g kg−1 biomass was reached. In addition, a valuable off-gas stream with a lower heating value of 7.9 MJ m−3 was produced. Moreover, a techno-economic assessment shows the economic feasibility of such a polygeneration concept, if certain feed in tariffs for renewable electricity and H2 exist. Consequently, these results show, that the dual fluidized bed biomass steam gasification technology is a promising route for a polygeneration concept, which aims at the production of H2, electricity, and district heat.
Peer reviewed papers | 2018
Impact of Oxidizing Honeycomb Catalysts Integrated in Firewood Stoves on Emissions under Real-Life Operating Conditions
Reichert G, Schmidl C, Haslinger W, Stressler H, Sturmlechner R, Schwabl M, Wöhler M, Hochenauer C. Impact of Oxidizing Honeycomb Catalysts Integrated in Firewood Stoves on Emissions under Real-Life Operating Conditions. Fuel Processing Technology. 2018; 117: 300-313.
Catalytic systems integrated in firewood stoves represent a secondary measure for emission reduction. This study evaluates the impact on emissions of two types of honeycomb catalysts integrated in different firewood stoves. The tests were conducted under real-life related testing conditions. The pressure drop induced by the catalyst's carrier geometry affects primary combustion conditions which can influence the emissions. A negative primary effect reduces the catalytic efficiency and has to be considered for developing catalyst integrated solutions. However, a significant net emission reduction was observed. The ceramic catalyst reduced CO emissions by 83%. The metallic catalyst reduced CO emissions by 93% which was significantly better compared to the ceramic catalyst. The net emission reduction of OGC (~30%) and PM (~20%) was similar for both types of catalysts. In most cases, the “Ecodesign” emission limit values, which will enter into force in 2022 for new stoves, were met although the ignition and preheating batches were respected. PM emission composition showed a lower share of elemental (EC) and organic carbon (OC) with integrated catalyst. However, no selectivity towards more reduction of EC or OC was observed. Further investigations should evaluate the long term stability under real-life operation in the field and the effect of the catalyst on polycyclic aromatic hydrocarbon (PAH) emissions.
Peer reviewed papers | 2018
Improving exploitation of chicken manure via two-stage anaerobic digestion with an intermediate membrane contactor to extract ammonia
Wang X, Gabauer W, Li Z, Ortner M, Fuchs W. Improving exploitation of chicken manure via two-stage anaerobic digestion with an intermediate membrane contactor to extract ammonia. Bioresource Technology 2018;368:811-814.
This study describes a modified process of ammonia release through pre-hydrolysis – ammonia removal via membrane contactor – methanization for counteracting ammonia inhibition in anaerobic digestion of chicken manure. In the pre-hydrolysis step, ammonia was rapidly released within the first 3–5 days. 78%-83% of the total nitrogen was finally converted into total ammonia/ammonium (TAN) with volatile fatty acids concentration of approximately 300 g/kg·VS. In the ammonia removal process, diluting the hydrolyzed chicken manure to 1:2, the TAN could be reduced to 2 g/kg in 21 h when pH was increased to 9. The final BMP test of chicken manure verified that lower TAN concentration (decreased to 2 g/kg) significantly reduced inhibitory effects, obtaining a high methane yield of 437.0 mL/g·VS. The investigations underlined several advantages of this modified process.
Peer reviewed papers | 2018
Influence of drag laws on pressure and bed material recirculation rate in a cold flow model of an 8 MW dual fluidized bed system by means of CPFD
Kraft S, Kirnbauer F, Hofbauer H. Influence of drag laws on pressure and bed material recirculation rate in a cold flow model of an 8 MW dual fluidized bed system by means of CPFD. Particuology, February 2018;36:70-81.
A cold flow model of an 8 MW dual fluidized bed (DFB) system is simulated using the commercial computational particle fluid dynamics (CPFD) software package Barracuda. The DFB system comprises a bubbling bed connected to a fast fluidized bed with the bed material circulating between them. As the hydrodynamics in hot DFB plants are complex because of high temperatures and many chemical reaction processes, cold flow models are used. Performing numerical simulations of cold flows enables a focus on the hydrodynamics as the chemistry and heat and mass transfer processes can be put aside. The drag law has a major influence on the hydrodynamics, and therefore its influence on pressure, particle distribution, and bed material recirculation rate is calculated using Barracuda and its results are compared with experimental results. The drag laws used were energy-minimization multiscale (EMMS), Ganser, Turton–Levenspiel, and a combination of Wen–Yu/Ergun. Eleven operating points were chosen for that study and each was calculated with the aforementioned drag laws. The EMMS drag law best predicted the pressure and distribution of the bed material in the different parts of the DFB system. For predicting the bed material recirculation rate, the Ganser drag law showed the best results. However, the drag laws often were not able to predict the experimentally found trends of the bed material recirculation rate. Indeed, the drag law significantly influences the hydrodynamic outcomes in a DFB system and must be chosen carefully to obtain meaningful simulation results. More research may enable recommendations as to which drag law is useful in simulations of a DFB system with CPFD.
Reports | 2018
Modellbasierte Regelung und Elektrofilterintegration zur schadstoffarmen Verbrennung alternativer Biomassebrennstoffe
Muschick D, Zemann C, Kelz J, Hofmeister G, Gölles M. Modellbasierte Regelung und Elektrofilterintegration zur schadstoffarmen Verbrennung alternativer Biomassebrennstoffe. FFG, Energieforschungsprogramm 1. Ausschreibung. 2018.
Reports | 2018
Modellbasierte Regelung von Scheitholzkesseln mit Pufferspeicher - Smart logwood boiler
Endbericht
Deutsch M, Gölles M, Zemann C, Zlabinger S. Modellbasierte Regelung von Scheitholzkesseln mit Pufferspeicher - Smart logwood boiler. FFG, Energieforschungsprogramm 1. Ausschreibung. 2018.
Scheitholzkessel sind die in Europa immer noch am stärksten verbreitete Form von Holz-basierten Zentralheizungssystemen. Der Bestand ist überaltert und weist die größten Anteile an den verursachten Schadstoffemissionen aus Festbrennstoffzentralheizungssystemen auf. Das Ziel des Projektes, die komplette Neuentwicklung einer modellbasierten Regelung für Scheitholzkessel mit Pufferspeichern und einer Solaranlage, stellte einen Technologie-sprung in Richtung einer drastischen Reduktion der Schadstoffemissionen (CO, org. C, Fein-staub) bei gleichzeitiger Erhöhung des Nutzungsgrades und Benutzerkomforts dar. Dabei erfolgte sowohl die übergeordnete Regelung des Zusammenspiels der Komponenten (Systemregelung) als auch die Regelung der einzelnen Komponenten (Feuerungsregelung, Hydraulikregelung) modellbasiert. Die neue Regelung basiert auf einer gezielten Interaktion mit dem Benutzer, in welcher der Benutzer zielgerichtet zum Nachlegen einer bestimmten Brennstoffmenge in einem bestimmten Zeitraum aufgefordert wird. Zusätzlich dazu werden alle Teilprozesse (Verbrennung des Scheitholzes, Übertragung der Wärme in den Pufferspeicher, usw.) modellbasiert und damit deutlich effizienter und genauer geregelt. Im Fall der Feuerungsregelung wurde zusätzlich zur modellbasierten Regelung von Vorlauf-temperatur und Sauerstoffgehalt auch eine innovative CO-l-Regelung eingesetzt, die basierend auf einer kontinuierlichen Schätzung der CO- l-Charakteristik unter Verwendung eines kombinierten Sensors zur Sauerstoffmessung und Detektion unverbrannter Kompo-nenten stets einen für den aktuellen Betriebszustand optimalen Sollwert für den Sauer-stoffgehalt vorgibt. Die laufende Anpassung des Sauerstoffgehaltes führt zu einer deutlichen Reduktion der Schadstoffemissionen (CO, org. C, Feinstaub). Zum Erreichen dieser Ziele wurden im Wesentlichen folgende Schritte durchgeführt:
- Experimentelle Untersuchung und Modellierung des Abbrandverhaltens von Scheitholz (inklusive der CO-l-Charakteristik)
- Entwicklung einer übergeordneten modellbasierten Systemregelung
- Entwicklung einer modellbasierten Feuerungsregelung (inkl. CO-l-Regelung) für einen effizienten und schadstoffarmen Betrieb des Scheitholkessels
- Experimentelle Bewertung des Potentials der modellbasierten Regelung
- Analyse der Anforderungen zur Anpassung der Regelung an andere Konfigurationen
Das beantragte Projekt leistete somit einen entscheidenden Beitrag zum Ausschreibungs-schwerpunkt „Effiziente und emissionsarme Klein- und Kleinstfeuerungen durch Integration einer intelligenten Verbrennungs- und Leistungsregelung“ und ging zusätzlich explizit auf die im Ausschreibungsleitfaden adressierte Verwendung von kombinierten Sensorsystemen wie CO- l-Sensorsysteme zur Verbrennungsregelung ein. Dabei ist insbesondere hervorzuheben, dass der durchdachte Ansatz das Sensorsignal zu Schätzung der CO- l-Charakteristik zu verwenden den wesentlichen Vorteil mit sich bringt, dass die exakte Messung der CO-Emissionen durch den Sensor nicht erforderlich ist, sondern es ausreicht, wenn dieser die Tendenzen richtig wiedergibt.
Other Publications | 2018
Modular Energy Management Systems for future cross-sectoral energy systems
Muschick D, Moser A, Stadler M, Gölles M. Modular Energy Management Systems for future cross-sectoral energy systems. World Sustainable Energy Days 2018.
Conference presentations and posters | 2018
Modular optimization-based energy management framework for cross-sectoral energy networks
Muschick D, Gölles M, Moser A. Modular optimization-based energy management framework for cross-sectoral energy networks. 5th International Solar District Heating Conference SDH. Graz, Austria: 2018. (Poster)
Other Publications | 2018
Modulares Energiemanagementsystem für sektorübergreifende Energiesysteme
Muschick D, Moser A, Stadler M, Gölles M. Modulares Energiemanagementsystem für sektorübergreifende Energiesysteme. 15. Symposiums Energieinnovation; Februar 2018.
Other Publications | 2018
Optimization of Heating, Electricits and Cooling Services in a Microgrid to Increase the Efficiency and Reliability
Lichtenegger K, Stadler M, Moser A, Zellinger M, Muschick D, Gölles M, Steinlechner M, Ayoub T, Gerardts B. Optimization of Heating, Electricits and Cooling Services in a Microgrid to Increase the Efficiency and Reliability. PoserGen Europe Wien, 20. Juni 2018
We briefly review the general concept and expected market potential of microgrids, then discuss the
optimization challenges associated with planning local cross-sectorial energy systems. A fair technology-
neutral approach to this optimization task leads to a hard problem, which has to be tackled with
advanced methods of mathematical optimization.
The power of this approach is illustrated in a case study, concerning the replacement of heating systems
in an alpine valley. In this case study we see both the potential for cost reduction and for the reduction
of CO2 emissions by an integrated planning approach
Conference presentations and posters | 2018
Performance improvement of model-based control strategies in large-scale solar plants and its implementation details
Innerhofer P, Unterberger V, Luidolt P, Lichtenegger K, Gölles M. Performance improvement of model-based control strategies in large-scale solar plants and its implementation details. 5th International Solar District Heating Conference SDH. Graz, Austria: 2018.