Sort Title Year

Publications


Contributions at other events | 2014

Analysis of Environmental and Economic Aspects of International Pellet Supply Chains

Ehrig, R. Analysis of Environmental and Economic Aspects of International Pellet Supply Chains, Ph.D. Thesis, Vienna University of Technology, Vienna, Austria, 2014.

Details

Biomass plays a key role to achieve the EU's 20-20-20 energy and climate targets. Because of rising European demand and limited domestic resources, the EU relies on worldwide imports. Given this framework, the present thesis explores the inuences on wood pellet supply chains considering dierent environmental policies, price risks and the eect of torrefaction pretreatment. The examinations refer to three real case studies for pellet trade from Australia, Canada, and Russia to Europe. In the rst investigation, the eciency of co-ring imported wood pellets in terms of CO2 savings and related subsidy schemes is analysed. Scenarios show that co-ring biomass is ecient to contribute to the EU energy targets. Though, policy makers could use these instruments more eective when directing sourcing decision towards options with even less environmental impacts. The second analysis explores the inuence of statistically derived price risks on total supply chain economics. It is shown that price risks can eect strong uctuations in the short term, which seriously aect the protability of individual trade routes. Securing the supply chain is mainly based on individual producer-buyer agreements, personal branch experiences and fast reactions on the subsidy system. Systematic evaluation of supply chains could contribute to a more reliable market and thus foster investment decisions. In the last investigation, the economic and environmental performance of potential torrefaction-based supply chains is assessed. As a result, torrefaction-based supply
chains turn out to be a certain alternative to conventional ones. Though, still huge research eorts and industrial demonstration are required to make torreed biomass a real alternative on the market.

 


Contributions to trade journals | 2014

Analysis of woody biomass commodity price volatility in Austria

Kristöfel C, Strasser C, Morawetz UB, Schmidt J, Schmid E. Analysis of woody biomass commodity price volatility in Austria. Biomass Bioenergy. 2014;65:112-124.

External Link

Details

Several energy and agricultural commodities have experienced higher price volatility in recent years. Management of price risks usually leads to additional costs that are often shared and transmitted along the supply chain to the final consumers. Only little information is currently available on how price volatility of woody biomass commodities has developed compared to energy and agricultural commodities in recent years. We compute the historic price volatility of woody biomass commodities using the standard deviation of log returns as well as univariate GARCH models. The results show that the price volatility of several woody biomass commodities has increased in recent years. However, the price volatility of woody biomass is still lower compared to the price volatility of agricultural commodities and fossil fuels. The analysis of factors and linkages provides insights of the current biomass market developments.


Conference contributions | 2014

Applicability survey of different torrefied biomass fuels in small scale appliances

Feldmeier S, Schwabl M, Wopienka E, Strasser C, Haslinger W. Applicability survey of different torrefied biomass fuels in small scale appliances, 22nd European Biomass Conference 2014, 23rd-26th of June 2014, Hamburg, Germany. p 662-666.

Details

The torrefaction process is a promising key technology for biomass treatment. An improvement of the fuel properties, e.g. a higher gross calorific value and a resulting increased energy density, is expected. The changed fuel properties in terms of water repellence enable an improved storability. However, the modified fuel characteristics change the combustion behaviour of the fuel. Since small­scale pellet boilers mainly are dedicated to wood pellets, the applicability of torrefied fuel yet remains unclear. Within the EU FP7 project SECTOR, amongst others, the end­use application of torrefied biomass was investigated in several small scale appliances and the behaviour during the stationary operational conditions of the combustion process was assessed. The experimental design was divided in two parts: First, a survey of the combustion appliances was conducted in order to observe the influence of the changed fuel properties on the different boiler systems. Afterwards, the combustion behaviour of torrefied pellets made of different raw material quality was monitored by utilizing the test fuels and monitor the emission release. The results of these experimental series provide an initial indication for the feasibility of the utilization of several torrefied fuels in state­of­the­art pellet boilers.


Conference contributions | 2014

Application of a Model Based Control Strategy at a Fixed Bed Biomass District Heating Plant

Zemann C, Heinreichsberger O, Gölles M, Brunner T, Dourdoumas N, Obernberger I. Application of a Model Based Control Strategy at a Fixed Bed Biomass District Heating Plant. 22nd European Biomass Conference and Exhibition Proceedings. 2014;1698-1705.

Details


Conference contributions | 2014

Ash melting behaviour of solid biofuels in residential pellet boilers

Schwabl M, Feldmeier S, Wopienka E, Haslinger W, Dahl J, Jensen TB, Hartmann H, Schön C, Boman C, Boström D. Pellets Workshop “Ash melting behaviour of solid biofuels in residential pellet boilers” (held held during the Central European Biomass Conference 2014), 15th-18th of January, Graz, Austria, 2014.

Details


Conference contributions | 2014

Bi-directional networks in district heating systems: Results of the heat flow simulaiton

Lichtenegger K, Wöss D, Halmdienst C, Schnetzinger R, Höftberger E. Bidirectional Networks BiNe, Workshop “ Bi-directional networks in district heating systems: Results of the heat flow simulation” (held during the Central European Biomass Conference 2014), 15th-18th of January, Graz, Austria, 2014.

Details


Conference contributions | 2014

Bilanzierung und Optimierung des Zweibett-Wirbelschicht-Dampfvergasers Oberwart mit IPSEpro

Wilk V, Bosch K, Hofbauer H. Bilanzierung und Optimierung des Zweibett-Wirbelschicht-Dampfvergasers Oberwart mit IPSEpro, Fachtagung Prozesssimulation in der Energietechnik 2014, 10th of September 2014, Leipzig, Germany.

Details


Peer-reviewed publications | 2014

Biodiesel Production in Africa

Walimwipi H, Yamba FD, Wörgetter M, Rathbauer J, Bacovsky D. Biodiesel production in Africa. Bioenergy for sustainable development in Africa. ISBN 978-94-007-2181-4 2012:93-102.

Details


Conference contributions | 2014

Biograce-II - Harmonised Greenhouse Gas Calculations for Electricity, Heating and Cooling from Biomass

Ludwiczek N, Bacovsky D, Neeft J. Biograce-II - Harmonised Greenhouse Gas Calculations for Electricity, Heating and Cooling from Biomass, 22nd European Biomass Conference 2014, 23rd-26th of June 2014, Hamburg, Germany. p 1359-1361.

Details


Contributions at other events | 2014

Biohydrogen Production Based on the Catalyzed Water Gas Shift Reaction in Wood Gas

Fail, S. Biohydrogen Production Based on the Catalyzed Water Gas Shift Reaction in Wood Gas, Ph.D. Thesis, Vienna University of Technology, Vienna, Austria, 2014.

Details


Conference contributions | 2014

Biomass CHP Oberwart –Production of heat, power and valuable gases

Rauch R. Biomass CHP Oberwart –Production of heat, power and valuable gases, 4th Central European Biomass Conference 2014, 15th-18th of January 2014, Graz, Austria.

Details


Conference contributions | 2014

Biomass CHP Oberwart: Status and Future Potentials

Wilk V, Bosch K, Rauch R, Hofbauer H. Biomass CHP Oberwart: Status and Future Potentials, 4th International Symposium on Gasification and its Applications (iSGA-4) 2014, 2nd-5th of September 2014, Vienna, Austria.

Details


Other publication | 2014

Biomass Gasification for Synthesis Gas Production and Applications of the Syngas

Rauch R, Hrbek J, Hofbauer H. Biomass gasification for synthesis gas production and applications of the syngas. Wiley Interdisciplinary Reviews: Energy and Environment. 2014;3(4):343-62.

External Link

Details

Synthesis gas from biomass can be produced and utilized in different ways. Conversion of biomass to synthesis gas can be done either in fluidized bed or entrained flow reactors. As gasification agent oxygen, steam, or mixtures are used. The most common use of biomass gasification in the last decades has been for heat and/or power production. Nowadays, the importance of transportation fuels from renewables is increased due to environmental aspects and growing fossil fuels prices. That is why the production of Fischer-Tropsch (FT) liquids, methanol, mixed alcohols, substitute natural gas (SNG), and hydrogen from biomass is now in focus of view. The most innovative and interesting ways of synthesis gas utilization and projects, BioTfueL or GoBiGas, BioLiq, Choren, etc. are discussed here. Further the microchannel technology by Oxford Catalysts and distributed production of SNG in decentral small scale are presented. The synthesis platform in Güssing, Austria is also presented. The FT liquids, hydrogen production, mixed alcohols, and BioSNG, these are the projects associated with the FICFB gasification plant in Güssing. Also the principle and examples of sorption-enhanced reforming to adjust H2/CO ratio in product gas during the gasification is described. Finally, in the conclusion also an outlook for the thermochemical pathway to transportation fuels is given. WIREs Energy Environ 2014, 3:343-362. doi: 10.1002/wene.97 For further resources related to this article, please visit the WIREs website. © 2013 Wiley Periodicals, Inc.


Conference contributions | 2014

Biomass in the Common Roadmap

Haslinger W. Biomass in the Common Roadmap, Annual Event of European Technology Platform Renewable Heating and Cooling 2014, 22nd of May 2014, Brussels, Belgium.

Details


Other Presentations | 2014

Can bioavailability of trace elements be measured in AD systems?

Ortner M, Rachbauer L, Somitsch W, Bochmann G, Fuchs W. Can bioavailability of trace elements be measured in AD systems? Biogas Science 2014, International Conference on Anaerobic Digestion 26th–30th of October 2014, Vienna, Austria.

Details


Peer Reviewed Scientific Journals | 2014

Can bioavailability of trace nutrients be measured in anaerobic digestion?

Ortner M, Rachbauer L, Somitsch W, Fuchs W. Can bioavailability of trace nutrients be measured in anaerobic digestion? Appl Energy. 2014;126:190-8.

External Link

Details

Trace nutrients significantly affect the microbial metabolic activity within anaerobic digestion processes but always imply the risk of overdosing of heavy metals. In this study the applicability of a sequential extraction scheme established for soil and sediment samples on biogas slurries with different compositions was tested and compared to an adapted version of this extraction method. The analytical results proved the successful applicability of the developed analytical technique for the speciation of trace nutrients in anaerobic digestion systems. The procedure fulfills the basic requirements of reproducible data, a time-saving analytical approach and economic feasibility. Recovery rates of 90-110% were obtained for the most important trace elements Fe, Co, Cu, Mo, Ni and Zn. However, it was demonstrated that the adapted method provides more reliable information about the bioavailable fractions and it is considered the more appropriate approach. Data on fractionation indicated that up to 76% of these essential trace nutrients might be present in an insoluble state. Depending on the specific trace element a significant fraction, from 30% to more than 70%, is not directly bioavailable. This important aspect should be considered to guarantee sufficient supply of the microbial consortium with trace elements and at the same time to avoid overdosage. © 2014 Elsevier Ltd.


Conference contributions | 2014

Conversion and leaching characteristics of ashes during outdoor storage

Supancic K, Obernberger I, Kienzl N, Arich A. Aschenutzung Workshop „Conversion and leaching characteristics of ashes during outdoor storage” (held during the Central European Biomass Conference 2014), 15th-18th of January, Graz, Austria, 2014.

Details


Conference contributions | 2014

Cost and energy efficient, environmentally friendly micro and small scale CHP

Haslinger W. Cost and energy efficient, environmentally friendly micro and small scale CHP, 5th AEBIOM European Bioenergy Conference 2014, 12th-14th of May 2014, Brussels, Belgium.

Details


Conference contributions | 2014

Deployment scenarios of biomass-to-end-use chains for torrefied biomass

Schipfer F, Kranzl L, Bienert K, Ehrig R, Meyer M. Deployment scenarios of biomass-to-end-use chains for torrefied biomass, Word Sustainable Energy Days next 2014, 26th-28th of February 2014, Wels, Austria.

Details


Conference contributions | 2014

Deployment strategies for solid sustainable energy carriers from biomass by means of torrefaction

Schipfer F, Bienert K, Majer S, Ehrig R, Strasser C, Kranzl L, Deployment strategies for solid sustainable energy carriers from biomass by means of torrefaction, 22nd European Biomass Conference 2014, 23rd-26th of June 2014, Hamburg, Germany.

Details


Conference contributions | 2014

Developing a simulation model for a mixed alcohol synthesis reactor and validation of experimental data in IPSEpro

Weber G, Di Giuliano A, Rauch R, Hofbauer H. Developing a simulation model for a mixed alcohol synthesis reactor and validation of experimental data in IPSEpro, 4th International Symposium on Gasification and its Applications (iSGA-4) 2014, 2nd-5th of September 2014, Vienna, Austria.

Details

The production of higher alcohols over a sulfidized molybdenum catalyst (MoS2) using a biomass-derived synthesis gas has been studied at Güssing for several years. The mixed alcohol (MA) pilot plant uses synthesis gas provided by the biomass-based combined heat and power plant (CHP) Güssing. Parameter variations were carried out wherein temperature, space velocity and gas composition were varied to evaluate the impact on CO conversion, product distribution and yield. The influence of side reactions to hydrocarbons was also a research objective. A sufficient amount of experimental data was obtained during these experiments. Evidence for the influence of various reaction parameters was found, but the mass balance could not be closed. A mathematical model of the MA synthesis reactor was developed using the stationary equation-orientated flow sheet simulation software IPSEpro. This publication gives an overview of modeling the MA reactor and condenser unit and testing the model with example calculations. Validated experimental results from 2012 parameter variation are shown and a comparison between experimental and validated quantities is carried out. A comparison with literature data shows that the observed tendencies are in good correlation to literature. The developed reactor model was enabling the possibility for carrying out a validation of the experimental data. IPSEpro uses the method of least-squares to obtain the approximate solution of the overall determined system. The established model was very close to the actual MA pilot plant. The model is very accurate about MA liquid product compositions and all measured flows.


Contributions to trade journals | 2014

Development of a gas phase combustion model suitable for low and high turbulence conditions

Shiehnejadhesar A, Mehrabian R, Scharler R, Goldin GM, Obernberger I. Development of a gas phase combustion model suitable for low and high turbulence conditions. Fuel. 2014;126:177-87.

External Link

Details

A novel hybrid gas phase combustion model suitable for low as well as high turbulent combustion conditions is proposed. In particular, in the region above the fuel bed of small-scale biomass combustion plants, gas phase mixing is highly influenced by laminar and low turbulence zones. Here, the eddy break-up combustion models are not valid because they were originally developed for highly turbulent flows. Therefore, a CFD gas phase reaction model applicable over the whole Reynolds range from laminar to turbulent flows is developed. It is a hybrid Eddy Dissipation Concept/finite rate kinetics model which calculates the effective reaction rate from laminar finite rate kinetics and the turbulent reaction rate and weights them depending on the local turbulent Reynolds number of the flow. To validate the proposed model, comparisons are made with experimental data for a series of jet flames covering laminar, transitional, and turbulent flow conditions. The simulation results show that the prediction of flame can be improved with the proposed hybrid combustion model. © 2014 Elsevier Ltd. All rights reserved.


Conference contributions | 2014

Development of a new Type test method for residential wood combusiton (RWC) appliances focusing on real life operation

Reichert G, Schmidl C, Aigenbauer S, Figl F, Moser W, Stressler H, Haslinger W, Development of a new Type test method for residential wood combusiton (RWC) appliances focusing on real life operation, 22nd European Biomass Conference 2014, 23rd-26th of June 2014, Hamburg, Germany. p 373-380.

Details

Since batch-wise operated biomass roomheaters are claimed to cause high amounts of gaseous and particulate emissions effective measures for a reduction of these emissions especially in real life operation have to be implemented in the future. For a verification of the real life operation performance as well as for a better product differentiation of biomass room heating appliances on the market advanced testing methods will be necessary in the future. Therefore a new test method for roomheaters called “Stove Testing 2020” (ST2020) was developed. According to the new test method the emission and efficiency performance of roomheaters is determined under operating conditions that are closer to real life. Compared to the existing EN 13240 standard also transient combustion phases are included. For a final evaluation of the test method the reproducibility as well as the real life relevance was analysed by a Round-Robin-Test as well as by field tests. The results showed sufficient reproducibility as well as a high real life relevance of the ST2020 test method. However, due to the strong impact of user behavior on emission and efficiency performance in real life operation further technological improvements of biomass roomheaters have to be strongly supported by effective measures to guarantee a correct operation.


Conference contributions | 2014

Development of novel concepts for microalgae in the Austrian energy system

Sonnleitner A, Bacovsky D. Development of novel concepts for microalgae in the Austrian energy system, 4. Central European Biomass Conference 2014, 15th-18th of January 2014, Graz, Austria.

Details

Microalgae are seen worldwide as a new and promising feedstock for the energy supply chain.
Because of their high productivity and their ability to convert CO2 into biomass, microalgae are a
potential raw material for biorefineries, avoiding the food versus fuel conflict, and contributing to an
increased share of renewable energy. According to the current state of the art the utilization of algal
biomass for the production of fuel, energy and heat seems to be economically not competitive and the
life cycle assessment shows improvement possibilities in energy consumption (project
Algae&Energy:Austria). There are different options for utilization concepts which are technologically
and economically feasible. New concepts need to be developed and synergies with already existing
technologies need to be used.
Challenges along the value chain:
· Supply of water for cultivation
· Supply of nutrients for cultivation
· Energy consumption during cultivation
· Harvesting and processing of biomass
· Investment and operating costs
One possibility to cover the need of water and nutrients in a cost-effective way is the combination of
microalgae cultivation and waste water treatment. The cultivation of algae using different waste water
types common in Austria is technologically possible. In particular municipal waste water and effluents
from breweries and dairies are suitable as substrate. Due to the usage of this synergy the need for
fresh water and artificial fertilizer for algae cultivation decreases substantially and therefore operating
costs are reduced. Promising production concepts were developed and further research and
development needs were pointed out (project SAM).
After producing algal biomass the harvesting and processing steps for further utilization seem to be
difficult. In particular the high amount of water increases the energy expenditure in most of the
conversion pathways. Hydrothermal liquefaction seems to be promising to reduce the energy intensity
through two major factors: First, the conversion takes place in the liquid phase, and no energy
intensive drying of the algal biomass is needed. Second, the entire carbon which is fixed in the algae
can be used for energy production. The main product of hydrothermal liquefaction is a bio-oil, which
can be further processed in existing refinery processes into biogenic motor fuels, plastics and basic
chemicals (project microHTL).
In Austria many scientific research groups and companies are dealing with microalgae in the energy
system. These research and development efforts comprise different topics and approaches, like
different cultivation system designs (open pond, photobioreactor), biotechnological optimization of
microalgae species, the utilization of algal biomass in energetic and material pathways or the
combination of microalgae cultivation with existing technologies. It is of growing importance to
establish a network of Austrian experts and research groups for enhancement of cooperation and
research within the field of algae (project network biobased industry).
Through the optimization along the entire value chain with special regard to novel concepts of
cultivation, harvesting, processing, conversion and utilization, as well as an enhanced network of
Austrian experts and research groups, microalgae can serve as biogenic feedstock for the energy


Conference contributions | 2014

Economic and ecological comparison of torrefaction-based biomass supply chains in Central Europe

Ehrig R, Kristöfel C, Rauch P, Strasser C, et al. Economic and ecological comparison of torrefaction-based biomass supply chains in Central Europe, 4th Central European Biomass Conference 2014, 15th-18th of January 2014, Graz, Austria.

Details