Sortierung Titel Year
  • 88 Einträge
  • 1
  • 2
  • 3
  • 4

Publikationen


Peer Reviewed Scientific Journals | 2021

Effect of biomass fuel ash and bed material on the product gas composition in DFB steam gasification

Fürsatz K, Fuchs J, Benedikt F, Kuba M, Hofbauer H. Effect of biomass fuel ash and bed material on the product gas composition in DFB steam gasification. Energy. 2021.219:119650.

External Link

Details

Gasification is a thermochemical process that transforms carbonaceous matter into a gaseous secondary energy carrier, referred to as product gas. This product gas can be used for heat and power generation but also for syntheses. One possible gasification technology suitable for further synthesis is dual fluidised bed (DFB) steam gasification. The H2:CO ratio, which determines the suitability of the product gas for further synthesis, is influenced by the catalytic activity inside the gasification reactor. Eleven DFB steam gasification experiments were performed comparing the catalytic activity for various bed material and fuel combinations. The bed materials used were K-feldspar, fresh and layered olivine, and limestone, and the fuels gasified were softwood, chicken manure, a bark–chicken manure mixture and a bark-straw-chicken manure mixture. The water-gas-shift (WGS) equilibrium deviation was used to evaluate the catalytic activity inside the gasification reactor. It was shown that both the fuel ash and bed material have an effect on the catalytic activity during gasification. Scanning electron microscopy and energy dispersive X-ray spectrometry showed the initial layer formation for experiments with ash-rich fuels. Isolated WGS experiments were performed to further highlight the influence of bed material, fuel ash and fuel ash layers on the WGS equilibrium.


Peer Reviewed Scientific Journals | 2021

Steam gasification of biomass – Typical gas quality and operational strategies derived from industrial-scale plants

Larsson A, Kuba M, Berdugo Vilches T, Seemann M, Hofbauer H, Thunman H. Steam gasification of biomass – Typical gas quality and operational strategies derived from industrial-scale plants. Fuel Processing Technology. 2021.212:106609.

External Link

Details

Steam gasification enables the thermochemical conversion of solid fuels into a medium calorific gas that can be utilized for the synthesis of advanced biofuels, chemicals or for heat and power production. Dual fluidized bed (DFB) gasification is at present the technology applied to realize gasification of biomass in steam environment at large scale. Few large-scale DFB gasifiers exist, and this work presents a compilation and analysis of the data and operational strategies from the six DFB gasifiers in Europe. It is shown that the technology is robust, as similar gas quality can be achieved despite the differences in reactor design and operation strategies. Reference concentrations of both gas components and tar components are provided, and correlations in the data are investigated. In all plants, adjusting the availability and accessibility to the active ash components (K and Ca) was the key to control the gas quality. The gas quality, and in particular the tar content of the gas, can conveniently be assessed by monitored the concentration of CH4 in the produced gas. The data and experience acquired from these plants provide important knowledge for the future development of the steam gasification of biomass.


Scientific Journals | 2020

A novel production route and process optimization of biomass-derived paraffin wax for pharmaceutical application

Gruber H, Lindner L, Arlt S, Reichhold A, Rauch R, Weber G, Trimbach J, Hofbauer H. A novel production route and process optimization of biomass-derived paraffin wax for pharmaceutical application. Journal of Cleaner Production. 2020;275:124135

External Link

Details

The Biomass to Liquid (BtL) Fischer-Tropsch (FT) route converts lignocellulosic feedstock to renewable hydrocarbons. This, paper shows a novel production route for biomass-derived synthetic paraffin wax via gasification of lignocellulosic feedstock, Fischer-Tropsch synthesis (FTS) and hydrofining. The Fischer-Tropsch wax was fractionated, refined and analyzed with respect to compliance to commercial standards. The fractioned paraffin waxes were hydrofined using a commercial sulfide NiMo–Al2O3 catalyst and a trickle bed reactor. A parametric variation was performed to optimize the hydrofining process. It was shown that the produced medium-melt paraffin wax could fulfill the requirements for “Paraffinum solidum” defined by the European Pharmacopoeia (Ph. Eur). The high-melt wax fraction showed potential to be used as food packaging additive. Furthermore, the renewable wax was analyzed regarding PAH content and it was shown that the hydrofined wax was quasi-PAH-free.


Scientific Journals | 2020

Aqueous phase reforming of pilot-scale Fischer-Tropsch water effluent for sustainable hydrogen production

Zoppi G, Pipitone G, Gruber H, Weber G, Reichhold A, Pirone R, Bensaid S. Aqueous phase reforming of pilot-scale Fischer-Tropsch water effluent for sustainable hydrogen production. Catalysis Today.2020.

External Link

Details

Fischer-Tropsch (FT) synthesis produces an aqueous stream containing light oxygenates as major by-product. The low carbon concentration of the organics makes its thermal recovery unprofitable. Thus, novel processes are needed to utilize this waste carbon content. In this work, the aqueous phase reforming of the wastewater obtained from a 15 kWth Fischer-Tropsch plant was explored as a promising process to produce hydrogen at mild temperatures. The FT product water was firstly characterized and afterward subjected to the reforming at different reaction temperatures and time, using a platinum catalyst supported on activated carbon. It was observed that, besides activity, the selectivity towards hydrogen was favored at higher temperatures; equally, increasing the reaction time allowed to obtain the total conversion of most molecules found in the solution, without decreasing the selectivity and reaching a plateau at 4 hours in the hydrogen productivity. In order to get more insights into the reaction mechanism and product distribution derived from the APR of FT product water, several tests were performed with single compounds, finding characteristic features. The importance of the position of the hydroxyl group in the molecule structure was highlighted, with secondary alcohols more prone to dehydrogenation pathways compared to primary alcohols. Moreover, no interference among the substrates was reported despite the mixture is constituted by several molecules: in fact, the results obtained with the real FT product water were analogous to the linear combination of the single compound tests. Finally, the reuse of the catalyst showed no appreciable deactivation phenomena.


Peer Reviewed Scientific Journals | 2020

Developing an adsorption-based gas cleaning system for a dual fluidized bed gasification process

Loipersböck J, Weber G, Rauch R, Hofbauer H. Developing an adsorption-based gas cleaning system for a dual fluidized bed gasification process.Biomass Conversion and Biorefinery. 2020.

External Link

Details

Biomass has the potential to make a major contribution to a renewable future economy. If biomass is gasified, a wide variety of products (e.g., bulk chemicals, hydrogen, methane, alcohols, diesel) can be produced. In each of these processes, gas cleaning is crucial. Impurities in the gas can cause catalyst poisoning, pipe plugging, unstable or poisoned end products, or harm the environment. Aromatic compounds (e.g., benzene, naphthalene, pyrene), in particular, have a huge impact on stable operation of syngas processes. The removal of these compounds can be accomplished by wet, dry, or hot gas cleaning methods. Wet gas cleaning methods tend to produce huge amounts of wastewater, which needs to be treated separately. Hot gas cleaning methods provide a clean gas but are often cost intensive due to the high operating temperatures and catalysts used in the system. Another approach is dry or semi-dry gas cleaning methods, including absorption and adsorption on solid matter. In this work, special focus was laid on adsorption-based gas cleaning for syngas applications. Adsorption and desorption test runs were carried out under laboratory conditions using a model gas with aromatic impurities. Adsorption isotherms, as well as dynamics, were measured with a multi-compound model gas. Based on these results, a temperature swing adsorption process was designed and tested under laboratory conditions, showing the possibility of replacing conventional wet gas cleaning with a semi-dry gas cleaning approach.


Conference contributions | 2020

Dual fluidized bed steam gasification of biomass – the basic technology for a broad product portfolio

Kuba M. Dual fluidized bed steam gasification of biomass – the basic technology for a broad product portfolio. 6th Central European Biomass Conference (oral presentation). 2020.

Details


Peer Reviewed Scientific Journals | 2020

Fate of Phosphorus in Fluidized Bed Cocombustion of Chicken Litter with Wheat Straw and Bark Residues

Häggström G, Fürsatz K, Kuba M, Skoglund N, Öhman M. Fate of Phosphorus in Fluidized Bed Cocombustion of Chicken Litter with Wheat Straw and Bark Residues. Energy and Fuels. 2020.34:1822-1829

External Link

Details

This study aims to determine the fate of P during fluidized bed co-combustion of chicken litter (CL) with K-rich fuels [e.g., wheat straw (WS)] and Ca-rich fuels (bark). The effect of fuel blending on phosphate speciation in ash was investigated. This was performed by chemical characterization of ash fractions to determine which phosphate compounds had formed and identify plausible ash transformation reactions for P. The ash fractions were produced in combustion experiments using CL and fuel blends with 30% CL and WS or bark (B) at 790–810 °C in a 5 kW laboratory-scale bubbling fluidized bed. Potassium feldspar was used as the bed material. Bed ash particles, cyclone ash, and particulate matter (PM) were collected and subjected to chemical analysis with scanning electron microscopy–energy-dispersive X-ray spectrometry (SEM–EDS) and X-ray diffraction. P was detected in coarse ash fractions only, that is, bed ash, cyclone ash, and coarse PM fraction (>1 μm); no P could be detected in the fine PM fraction (<1 μm). SEM–EDS analysis showed that P was mainly present in K–Ca–P-rich areas for pure CL as well as in the ashes from the fuel blends of CL with WS or B. In the WS blend, P was found together with Si in these areas. The crystalline compound containing P was hydroxyapatite in all cases as well as whitlockite in the cases of pure CL and WS blend, of which the latter compound has been previously identified as a promising plant nutrient. The ash fractions from CL and bark blend only contained P in hydroxyapatite. Co-combustion of CL together with WS appears to be promising for P recovery, and ashes with this composition could be further studied in plant growth experiments


Peer Reviewed Scientific Journals | 2020

Impact of residual fuel ash layers on the catalytic activation of K-feldspar regarding the water–gas shift reaction

Fürsatz K, Kuba M, Janisch D, Aziaba K, Hammerl C, Chlebda D, Łojewska J, Hofbauer H. Impact of residual fuel ash layers on the catalytic activation of K-feldspar regarding the water–gas shift reaction. Biomass Conversion and Biorefinery. 2020

External Link

Details

Interaction of biomass ash and bed materials in thermochemical conversion in fluidized beds leads to changes of the bed particle surface due to ash layer formation. Ash components present on the bed particle surface strongly depend on the ash composition of the fuel. Thus, the residual biomass used has a strong influence on the surface changes on bed particles in fluidized bed conversion processes and, therefore, on the catalytic performance of the bed material layers. Ash layer formation is associated with an increase in the catalytic activity of the bed particles in gasification and plays a key role in the operability of different biomass fuels. The catalytic activation over time was observed for K-feldspar used as the bed material with bark, chicken manure, and a mixture of bark and chicken manure as fuels. The changes on the bed material surfaces were further characterized by SEM/EDS and BET analyses. Raman, XPS, and XRD analyses were used to characterize the crystal phases on the bed material surface. An increase in surface area over time was observed for K-feldspar during the interaction with biomass ash. Additionally, a more inhomogeneous surface composition for fuels containing chicken manure in comparison to pure bark was observed. This was due to the active participation of phosphorus from the fuel ash in the ash transformation reactions leading to their presence on the particle surface. A decreased catalytic activity was observed for the same BET surface area compared to bark combustion, caused by the different fuel ash composition of chicken manure.


Conference contributions | 2020

Influence of ash forming elements from biogenous residues on fluidized bed conversion processes

Fürsatz K, Influence of ash forming elements from biogenous residues on fluidized bed conversion processes. 6th Central Eurpean Biomass Conference, 22-24 January 2020, Graz.

External Link

Download PDF

Details


Peer Reviewed Scientific Journals | 2020

Influence of bed materials on the performance of the Nong Bua dual fluidized bed gasification power plant in Thailand

Siriwongrungson V, Hongrapipat J, Kuba M, Rauch R, Pang S, Thaveesri J, Messner M, Hofbauer H. Influence of bed materials on the performance of the Nong Bua dual fluidized bed gasification power plant in Thailand. Biomass Conversion and Biorefinery. 2020;

External Link

Details

Bed materials and their catalytic activity are two main parameters that affect the performance of the dual fluidized bed (DFB) gasification system in terms of product gas composition and tar levels. Two sources of bed materials were used for the operation of a commercial DFB gasification system in Thailand, using woodchips as a biomass feedstock. One source of the bed materials was the calcined olivine which had been used in the Gussing Plant, Austria, and the other activated bed material was a mixture of fresh Chinese olivine and used Austrian olivine with additives of biomass ash, calcium hydroxide and dolomite. These bed materials were collected and analysed for morphological and chemical composition using a scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray fluorescence spectroscopy (XRF). The product gas was cleaned in a scrubber to remove tars, from which the samples were collected for gravimetric tar analysis. Its composition data was automatically recorded at the operation site before it entered the gas engine. From the SEM, EDS and XRF analyses, calcium-rich layers around the bed materials were observed on the activated bed material. The inner layers of bed materials collected were homogeneous. Biomass ash, which was generally added to the bed materials, had significant calcium and potassium content. These calcium-rich layers of the bed materials, from the calcium hydroxide, biomass ash and dolomite, influenced system performance, which was determined by observing lower tar concentration and higher hydrogen concentration in the product gas.


Technical Reports | 2020

Investigation of the formation of coherent ash residues during fluidized bed gasification of wheat straw lignin

Priscak J, Fürsatz K, Kuba M, Skoglund N, Benedikt F, Hofbauer H. Investigation of the formation of coherent ash residues during fluidized bed gasification of wheat straw lignin. Energies. 2020;13(15):3935:

External Link

Details

Thermal conversion of ash-rich fuels in fluidized bed systems is often associated with extensive operation problems caused by the high amount of reactive inorganics. This paper investigates the behavior of wheat straw lignin—a potential renewable fuel for dual fluidized bed gasification. The formation of coherent ash residues and its impact on the operation performance has been investigated and was supported by thermochemical equilibrium calculations in FactSage 7.3. The formation of those ash residues, and their subsequent accumulation on the surface of the fluidized bed, causes temperature and pressure fluctuations, which negatively influence the steady-state operation of the fluidized bed process. This paper presents a detailed characterization of the coherent ash residues, which consists mostly of silica and partially molten alkali silicates. Furthermore, the paper gives insights into the formation of these ash residues, dependent on the fuel pretreatment (pelletizing) of the wheat straw lignin, which increases their stability compared to the utilization of non-pelletized fuel.


Conference contributions | 2020

Optimizing of a hydrogen production plant by optimization of the CO2 removal step

Loipersböck J. Optimizing of a hydrogen production plant by optimization of the CO2 removal step. 6th Central European Biomass Conference (oral presentation) 2020.

External Link

Download PDF

Details

Hydrogen production in 2010 was estimated to 50 Mt/a. 96 % of today’s hydrogen is produced by converting fossil fuels in thermochemical processes. As main conversion technology steam reforming of natural gas and naphtha has been established. Hydrogen is mainly used in refineries, for ammonia production and in several chemical production plants. Hydrogen is also seen as a promising alternative energy carrier for the transport sector. Therefor an increasing demand on hydrogen over the next years can be assumed.  
To substitute fossil produced hydrogen several renewable hydrogen routes have been established. Beside electrolysis of water also steam reforming of biogas, methane pyrolysis and gasification technologies have been developed. This work will focus on hydrogen production based on dual fluidized bed gasification of biomass.  
Dual fluidized bed gasification gives the possibility to establish a renewable hydrogen production route and substitute fossil fuels. A hydrogen production plant consisting of a dual fluidized bed gasifier, a water gas shift stage, a CO2 removal, a pressure swing adsorption and a steam reformer were erected and operated over 1000 h. The gathered data was validated and a model for up-scaling was developed. A benchmark size of 10 MW fuel input power was used as base for economic estimations. As described in previous work an overall efficiency of 55 % can be achieved, which is comparable to alternative technologies. Compared to other renewable routes, hydrogen production based on dual fluidized bed gasification gives the possibility of a fuel flexible system for continuous hydrogen production.  
Hydrogen production derived by DFB gasification of wood is a reliable process, which needs to be optimized due to economic reasons. Special attention has to be paid on the CO2 removal, to obtain an economic efficient process.  
In this study a parameter variation of the CO2 removal, which consists of absorption and desorption column, was done. Mono-ethanol-amine (MEA) was used as a solvent. One focus of the experimental investigations was the desorption at low temperatures to gain the possibility of using temperature levels which are common in district heat grids. For the experiments real synthesis gas with impurities was used. Over the gas cleaning steps of the hydrogen production plant, impurities were removed and hydrogen content was increased. To increase the efficiency of the CO2 removal and further the hydrogen production, a parameter study was done. A good correlation between separation efficiency and desorption temperature could be observed.  
Economics were calculated comparing natural gas steam reforming, electrolysis and hydrogen production based dual fluidized bed gasification. First results show a high potential for establishing the BioH2 plant as a commercial production plant. An economic plant operation with wood chips can be achieved at plant sizes of 20-30 MW fuel input power. A switch to lower quality biomass can reduce the economic feasible plant size even further.  
Keywords: hydrogen, up-scaling, economics, CO2 removal


Peer Reviewed Scientific Journals | 2020

Surface characterization of ash-layered olivine from fluidized bed biomass gasification

Kuba M, Fürsatz K, Janisch D, Aziaba K, Chlebda D, Łojewska J, Forsberg F, Umeki K, Hofbauer H. Surface characterization of ash-layered olivine from fluidized bed biomass gasification. Biomass Conversion and Biorefinery. 2020

External Link

Details

The present study aims to present a comprehensive characterization of the surface of ash-layered olivine bed particles from dual fluidized bed gasification. It is well known from operation experience at industrial gasification plants that the bed material is activated during operation concerning its positive influence on gasification reactions. This is due to the built up of ash layers on the bed material particles; however, the chemical mechanisms are not well understood yet. Olivine samples from long-term operation in an industrial-scale gasification plant were investigated in comparison to fresh unused olivine. Changes of the surface morphology due to Ca-enrichment showed a significant increase of their surface area. Furthermore, the Ca-enrichment on the ash layer surface was distinctively associated to CaO being present. The presence of CaO on the surface was proven by adsorption tests of carbon monoxide as model compound. The detailed characterization contributes to a deeper understanding of the surface properties of ash layers and forms the basis for further investigations into their influence on gasification reactions.


Peer Reviewed Scientific Journals | 2020

Thermochemical equilibrium study of ash transformation during combustion and gasification of sewage sludge mixtures with agricultural residues with focus on the phosphorus speciation

Hannl TK, Sefidari H, Kub M, Skoglund N, Öhmann M. Thermochemical equilibrium study of ash transformation during combustion and gasification of sewage sludge mixtures with agricultural residues with focus on the phosphorus speciation. Biomass Conversion and Biorefinery.2020

External Link

Details

The necessity of recycling anthropogenically used phosphorus to prevent aquatic eutrophication and decrease the economic dependency on mined phosphate ores encouraged recent research to identify potential alternative resource pools. One of these resource pools is the ash derived from the thermochemical conversion of sewage sludge. This ash is rich in phosphorus, although most of it is chemically associated in a way where it is not plant available. The aim of this work was to identify the P recovery potential of ashes from sewage sludge co-conversion processes with two types of agricultural residues, namely wheat straw (rich in K and Si) and sunflower husks (rich in K), employing thermodynamic equilibrium calculations. The results indicate that both the melting behavior and the formation of plant available phosphates can be enhanced by using these fuel blends in comparison with pure sewage sludge. This enhanced bioavailability of phosphates was mostly due to the predicted formation of K-bearing phosphates in the mixtures instead of Ca/Fe/Al phosphates in the pure sewage sludge ash. According to the calculations, gasification conditions could increase the degree of slag formation and enhance the volatilization of K in comparison with combustion conditions. Furthermore, the possibility of precipitating phosphates from ash melts could be shown. It is emphasized that the results of this theoretical study represent an idealized system since in practice, non-equilibrium influences such as kinetic limitations and formation of amorphous structures may be significant. However, applicability of thermodynamic calculations in the prediction of molten and solid phases may still guide experimental research to investigate the actual phosphate formation in the future.


Conference contributions | 2019

Aqueous phase reforming of Fischer-Tropsch water fraction

Zoppi G, Pipitone G, Gruber H, Weber G, Reichhold A, Pirone R, Bensaid S. Aqueous phase reforming of Fischer-Tropsch water fraction. ICPS 2019.

Details


Conference contributions | 2019

Decomposition of tars in dual fluidized bed gasification – mechanisms of formation and decomposition in long-term operation

Umeki K, Priscak J, Kuba M. Decomposition of tars in dual fluidized bed gasification – mechanisms of formation and decomposition in long-term operation. ICPS 2019.

Details


Conference contributions | 2019

Development of a New Method for Investigation of the Ash Melting Behavior in the Fluidized Bed Conversion Processes

Priscak J, Kuba M, Hofbauer H. Development of a New Method for Investigation of the Ash Melting Behavior in the Fluidized Bed Conversion Processes. ICPS 2019.

Details


Technical Reports | 2019

Fischer-Tropsch products from biomass-derived syngas and renewable hydrogen

Gruber H, Groß P, Rauch R, Reichhold A, Zweiler R, Aichernig C, Müller S, Ataimisch N, Hofbauer H. Fischer-Tropsch products from biomass-derived syngas and renewable hydrogen. 2019.

External Link

Details

Global climate change will make it necessary to transform transportation and mobility away from what we know now towards a sustainable, flexible, and dynamic sector. A severe reduction of fossil-based CO2 emissions in all energy-consuming sectors will be necessary to keep global warming below 2 °C above preindustrial levels. Thus, long-distance transportation will have to increase the share of renewable fuel consumed until alternative powertrains are ready to step in. Additionally, it is predicted that the share of renewables in the power generation sector grows worldwide. Thus, the need to store the excess electricity produced by fluctuating renewable sources is going to grow alike. The “Winddiesel” technology enables the integrative use of excess electricity combined with biomass-based fuel production. Surplus electricity can be converted to H2 via electrolysis in a first step. The fluctuating H2 source is combined with biomass-derived CO-rich syngas from gasification of lignocellulosic feedstock. Fischer-Tropsch synthesis converts the syngas to renewable hydrocarbons. This research article summarizes the experiments performed and presents new insights regarding the effects of load changes on the Fischer-Tropsch synthesis. Long-term campaigns were carried out, and performance-indicating parameters such as per-pass CO conversion, product distribution, and productivity were evaluated. The experiments showed that integrating renewable H2 into a biomass-to-liquid Fischer-Tropsch concept could increase the productivity while product distribution remains almost the same. Furthermore, the economic assessment performed indicates good preconditions towards commercialization of the proposed system.


Conference contributions | 2019

Influence of fuel ash and bed material on the water-gas-shift equilibrium in DFB steam gasification

Fürsatz K, Fuchs J, Bartik A, Kuba M, Hofbauer H. Influence of fuel ash and bed material on the water-gas-shift equilibrium in DFB steam gasification. ICPS 2019.

External Link

Details

The bed material chosen for dual fluidized bed steam gasification has an important effect on the performance of gasification. Depending on their characteristics and properties, bed materials can have either a higher or lower catalytic activity, which influences the product gas composition as well as the tar content in the product gas. More catalytically active bed materials, like limestone and olivine, improve the quality of the product gas by e.g. promoting the water-gas-shift reaction and tar reforming reaction. The layers formed on the bed material are another aspect influencing the product gas composition. These layers are formed by the interaction of bed material and fuel ash. The deviation from the water-gas-shift equilibrium was chosen to quantify the effect of several bed materials and ash layers on the catalytic activity. The bed materials tested were K-feldspar, limestone, and activated olivine, while the used fuels were softwood, chicken manure, a bark – chicken manure mixture, and a bark –straw – chicken manure mixture. The performed experiments showed that an increased catalytic activity can be achieved by either using a catalytically active bed materials or ash-rich fuels.

 


Scientific Journals | 2019

Layer formation mechanism of K-feldspar in bubbling fluidized bed combustion of phosphorus-lean and phosphorus-rich residual biomass.

Wagner K, Häggström G, Skoglund N, Priscak J, Kuba M, Öhman M, Hofbauer H. Layer formation mechanism of K-feldspar in bubbling fluidized bed combustion of phosphorus-lean and phosphorus-rich residual biomass. Applied Energy 2019.248:545-554.

External Link

Details

The use of phosphorus-rich fuels in fluidized bed combustion is one probable way to support both heat and power production and phosphorus recovery. Ash is accumulated in the bed during combustion and interacts with the bed material to form layers and/or agglomerates, possibly removing phosphorus from the bed ash fraction. To further deepen the knowledge about the difference in the mechanisms behind the ash chemistry of phosphorus-lean and phosphorus-rich fuels, experiments in a 5 kW bench-scale-fluidized bed test-rig with K-feldspar as the bed material were conducted with bark, wheat straw, chicken manure, and chicken manure admixtures to bark and straw. Bed material samples were collected and studied for layer formation and agglomeration phenomena by scanning electron microscopy combined with energy dispersive X-ray spectrometry. The admixture of phosphorus-rich chicken manure to bark changed the layer formation mechanism, shifting the chemistry to the formation of phosphates rather than silicates. The admixture of chicken manure to straw reduced the ash melting and agglomeration risk, making it possible to increase the time until defluidization of the fluidized bed occurred. The results also highlight that an increased ash content does not necessarily lead to more ash melting related problems if the ash melting temperature is high enough.


Peer Reviewed Scientific Journals | 2019

Layer Formation on Feldspar Bed Particles during Indirect Gasification of Wood Part 1: K-Feldspar

Faust R, Hannl T K, Berdugo Vilches T, Kuba M, Öhmann M, Seemann M C, Knutsson P Layer Formation on Feldspar Bed Particles during Indirect Gasification of Wood Part 1: K-Feldspar.Energy&Fuels 2019.33:8:7321-7332

External Link

Details

The choice of bed material for biomass gasification plays a crucial role for the overall efficiency of the process. Olivine is the material conventionally used for biomass gasification due to the observed activity of olivine toward cracking of unwanted tars. Despite its catalytic activity, olivine contains high levels of chromium, which complicates the deposition of used bed material. Feldspar has shown the same activity as olivine when used as a bed material in biomass gasification. As opposed to olivine, feldspar does not contain environmentally hazardous compounds, which makes it a preferred alternative for further applications. The interaction of bed material and ash heavily influences the properties of the bed material. In the present study interactions between feldspar and main ash compounds of woody biomass in an indirect gasification system were investigated. Bed material samples were collected at different time intervals and analyzed with SEM-EDS and XRD. The obtained analysis results were then compared to thermodynamic models. The performed study was divided in two parts: in part 1 (the present paper), K-rich feldspar was investigated, whereas Na-rich feldspar is presented in part 2 of the study (DOI: 10.1021/acs.energyfuels.9b01291). From the material analysis performed, it can be seen that, as a result of the bed materials’ interactions with the formed ash compounds, the latter were first deposited on the surface of the K-feldspar particles and later resulted in the formation of Ca- and Mg-rich layers. The Ca enriched in the layers further reacted with the feldspar, which led to its diffusion into the particles and the formation of CaSiO3 and KAlSiO4. Contrary to Ca, Mg did not react with the feldspar and remained on the surface of the particles, where it was found as Mg- or Ca-Mg-silicates. As a result of the described interactions, layer separation was noted after 51 h with an outer Mg-rich layer and an inner Ca-rich layer. Due to the development of the Ca- and Mg-rich layers and the bed material–ash interactions, crack formation was observed on the particles’ surfaces.


Scientific Journals | 2019

Layer Formation on Feldspar Bed Particles during Indirect Gasification of Wood. 1. K-Feldspar

Faust R, Hannl TK, Berdugo Vilches T Kuba M, Öhman M, Seemann M, Knutsson P. Layer Formation on Feldspar Bed Particles during Indirect Gasification of Wood. 1. K-Feldspar. Energy and Fuels 2019.33:7321-7332.

External Link

Details

The choice of bed material for biomass gasification plays a crucial role for the overall efficiency of the process. Olivine is the material conventionally used for biomass gasification due to the observed activity of olivine toward cracking of unwanted tars. Despite its catalytic activity, olivine contains high levels of chromium, which complicates the deposition of used bed material. Feldspar has shown the same activity as olivine when used as a bed material in biomass gasification. As opposed to olivine, feldspar does not contain environmentally hazardous compounds, which makes it a preferred alternative for further applications. The interaction of bed material and ash heavily influences the properties of the bed material. In the present study interactions between feldspar and main ash compounds of woody biomass in an indirect gasification system were investigated. Bed material samples were collected at different time intervals and analyzed with SEM-EDS and XRD. The obtained analysis results were then compared to thermodynamic models. The performed study was divided in two parts: in part 1 (the present paper), K-rich feldspar was investigated, whereas Na-rich feldspar is presented in part 2 of the study (DOI: 10.1021/acs.energyfuels.9b01291). From the material analysis performed, it can be seen that, as a result of the bed materials’ interactions with the formed ash compounds, the latter were first deposited on the surface of the K-feldspar particles and later resulted in the formation of Ca- and Mg-rich layers. The Ca enriched in the layers further reacted with the feldspar, which led to its diffusion into the particles and the formation of CaSiO3 and KAlSiO4. Contrary to Ca, Mg did not react with the feldspar and remained on the surface of the particles, where it was found as Mg- or Ca-Mg-silicates. As a result of the described interactions, layer separation was noted after 51 h with an outer Mg-rich layer and an inner Ca-rich layer. Due to the development of the Ca- and Mg-rich layers and the bed material–ash interactions, crack formation was observed on the particles’ surfaces.


Scientific Journals | 2019

Layer Formation on Feldspar Bed Particles during Indirect Gasification of Wood. 2. Na-Feldspar

Hannl TK, Faust R, Kuba M, Knutsson P, Berdugo Vilches T, Seemann MC, Öhman M. Layer Formation on Feldspar Bed Particles during Indirect Gasification of Wood Part 2: Na-Feldspar. Energy and Fuels 2019.33:7333-7346.

External Link

Details

Selecting a suitable bed material for the thermochemical conversion of a specific feedstock in a fluidized bed system requires identification of the characteristics of potential bed materials. An essential part of these characteristics is the interaction of the bed material with feedstock ash in a fluidized bed, which leads to layer formation and morphology changes. For this purpose, the interaction of feldspar bed material with the main ash-forming elements in wood ash (Ca, K, Mg, Si) in an indirect gasification system was analyzed using SEM-EDS, XRD, and thermodynamic modeling. In part 1 of this work (DOI: 10.1021/acs.energyfuels.9b01291), the layer formation on K-feldspar dominated by Ca reaction and ash deposition was investigated. The aim of this second part of the work was to determine the time-dependent layer formation on Na-feldspar and compare the results with the findings for K-feldspar. Interaction of Na-feldspar with ash-derived elements resulted in different layers on Na-feldspar: K reaction layers, where K replaced Na and Si shares decreased; Ca reaction layers, where Ca enriched and reacted with the Na-feldspar; and ash deposition layers, where wood ash elements accumulated on the surface. Ca reaction layers were formed first and became continuous on the surface before K reaction layers and ash deposition layers were detected. Cracks and crack layer formation in the Na-feldspar particles were found after several days of operation. The layer compositions and growth rates indicate that the diffusion of Ca and K plays an essential role in the formation of Ca reaction and K reaction layers. The reaction with Ca and the crack formation coincide with the interaction previously found for quartz and K-feldspar. In contrast to K-feldspar, Na-feldspar showed high potential for reaction with K. The findings indicate that the reaction of Na-feldspar with ash-derived K makes Na-feldspar a less stable bed material than K-feldspar during the thermochemical conversion of K-rich feedstocks in a fluidized bed system.


Scientific Journals | 2019

Layer formation on K-feldspar in fluidized bed combustion and gasification of bark and chicken manure

Wagner K, Häggström G, Mauerhofer AM, Kuba M, Skoglund N, Öhman M, Hofbauer H. Layer formation on K-feldspar in fluidized bed combustion and gasification of bark and chicken manure. Biomass and Bioenergy 2019.127:105251.

External Link

Details

Understanding layer formation on bed materials used in fluidized beds is a key step for advances in the application of alternative fuels. Layers can be responsible for agglomeration-caused shut-downs but they can also improve the gas composition in fluidized bed gasification. Layers were observed on K-feldspar (KAlSi3O8) impurities originating from the combined heat and power plant Senden which applies the dual fluidized bed (DFB) steam gasification technology. Pure K-feldspar was therefore considered as alternative bed material in DFB steam gasification. Focusing on the interactions between fuel ash and bed material, K-feldspar was tested in combustion and DFB steam gasification atmospheres using different fuels, namely Ca-rich bark, Ca- and P-rich chicken manure, and an admixture of chicken manure to bark. The bed particle layers formed on the bed material surface were characterized using combined scanning electron microscopy and energy-dispersive X-ray spectroscopy; area mappings and line scans were carried out for all samples. The obtained data show no essential influence of operational mode on the layer-formation process. During the combustion and DFB steam gasification of Ca-rich bark, a layer rich in Ca formed while K was diffusing out of the layer. The use of Ca- and P-rich chicken manure inhibited the diffusion of K, and a layer rich in Ca and P formed. The addition of P to bark via chicken manure also changed the underlying layer-formation processes to reflect the same processes as observed for pure chicken manure.


Scientific Journals | 2019

Mathematical model of Fischer-Tropsch synthesis using variable alpha-parameter to predict product distribution.

Filip L, Zámostný P, Rauch R. Mathematical model of Fischer-Tropsch synthesis using variable alpha-parameter to predict product distribution. Fuel 2019;243:603-609.

External Link

Details

A mathematical model was developed based on data obtained on Fischer-Tropsch (FT) laboratory scale unit operated in steady state, belonging to BIOENERGY 2020+ GmbH, Austria to demonstrate alpha-parameter dependence on carbon number. The lab-scale unit processed the synthesis gas, obtained by the gasification of biomass (woodchips), to produce liquid fuels for transportation applications. The FT reaction took place in a slurry reactor filled with dispersed cobalt-based catalyst. The products were then separated by partial condensation depending on their boiling points. The final output of the FT laboratory scale unit comprised three product streams – wax, diesel and naphtha. The reaction and separation of products were simulated in Aspen Plus software. The mathematical model used kinetic description based on power-law rate equations. The modeled product selectivity was controlled using an alpha-parameter of the Anderson-Schulz-Flory distribution. Because of the significant deviation of products spectrum from typical Anderson-Schulz-Flory distribution, a modified description of reaction selectivity was developed. The description introduces variable alpha-parameter, dependent on number of carbon atoms in the reacting molecule. The mathematical model developed using MATLAB software considered the production of aliphatic paraffins having a number of carbon atoms from C1 to C60. The mathematical model of simulated lab-scale unit comprised an ideally mixed reactor RCSTR and three FLASH2 separators for the separation of desired products. The results from mathematical model were validated by a comparison with experimental results from FT lab-scale unit. The modified polynomial dependency of alpha-parameter on carbon number showed significantly better description of composition and amounts of FT products, especially for wax stream where the description using constant alpha led to enormous deviations. Such better prediction of composition and amounts of acquired products is important for evaluating efficiency of further upgrading the FT products to liquid fuel.