Sortierung Titel Year

Publikationen


Peer Reviewed Scientific Journals | 2021

Bioenergy technologies, uses, market and future trends with Austria as a case study

Anca-Couce A, Hochenauer C, Scharler R. Bioenergy technologies, uses, market and future trends with Austria as a case study. Renewable and Sustainable Energy Reviews.2021;135:110237.

External Link

Details

The current bioenergy uses and conversion technologies as well as future trends for the production of heat, power, fuels and chemicals from biomass are reviewed. The focus is placed in Austria, which is selected due to its high bioenergy utilization, providing 18.4% of the gross energy final consumption in 2017, and its strong industrial and scientific position in the field. The most common bioenergy application in Austria is bioheat with 170 PJ in 2017 mainly obtained from woody biomass combustion, followed by biofuels with 21 PJ and bioelectricity with 17 PJ. Bioheat has a stable market, where Austrian manufacturers of boilers and stoves have a strong position exporting most of their production. Future developments in bioheat production should go in the line of further reducing emissions, increasing feedstock flexibility and coupling with other renewables. For bioelectricity and biofuels, the current framework does not promote the growth of the current main technologies, i.e. combined heat and power (CHP) based on biomass combustion or biogas and first generation biofuels. However, an increase in all bioenergy uses is required to achieve the Austrian plan to be climate neutral in 2040. The current initiatives and future possibilities to achieve this increase are presented and discussed, e.g. mandatory substitution of old oil boilers, production of biomethane and early commercialization of CHP with a high efficiency or demonstration of advanced biofuels production based on gasification.


Peer Reviewed Scientific Journals | 2020

A MILP-based modular energy management system for urban multi-energy systems: Performance and sensitivity analysis

Moser AGC, Muschick D, Gölles M, Nageler PJ, Schranzhofer H, Mach T et al. A MILP-based modular energy management system for urban multi-energy systems: Performance and sensitivity analysis. Applied Energy. 2020;2020(261). 114342.

External Link

Details

The continuous increase of (volatile) renewable energy production and the coupling of different energy sectors such as heating, cooling and electricity have significantly increased the complexity of urban energy systems. Such multi-energy systems (MES) can be operated more efficiently with the aid of optimization-based energy management systems (EMS). However, most existing EMS are tailor-made for one specific system or class of systems, i.e. are not generally applicable. Furthermore, only limited information on the actual savings potential of the usage of an EMS under realistic conditions is available. Therefore, this paper presents a novel modular modeling approach for an EMS for urban MES, which also enables the modeling of complex system configurations. To assess the actual savings potential of the proposed EMS, a comprehensive case study was carried out. In the course of this the influence of different user behavior, changing climatic conditions and forecast errors on the savings potential was analyzed by comparing it with a conventional control strategy. The results showed that using the proposed EMS in conjunction with supplementary system components (thermal energy storage and battery) an annual cost savings potential of between 3 and 6% could be achieved.


Conference contributions | 2020

A modular energy management system for multi-energy systems

Muschick D, Kaisermayer V, Moser A, Gölles M. A modular energy management system for multi-energy systems. 6th Central European Biomass Conference, 22-24 January 2020, Graz.

Download PDF

Details


Conference contributions | 2020

Advanced biomass CCHP (BIO-CCHP) based on gasification, SOFC and cooling machines

Lagler J, Martini S. Advanced biomass CCHP (BIO-CCHP) based on gasification, SOFC and cooling machines. 6th Central European Biomass Conferenc, 2020, Graz.

Download PDF

Details


Conference contributions | 2020

Advanced Test Methods for Pellet Stoves

Reichert G, Schmidl C. Advanced Test Methods for Pellet Stoves. 6th Central European Biomass Conference, 2020, Graz.

Download PDF

Details


Peer Reviewed Scientific Journals | 2020

Applicability of Torrefied Sunflower Husk Pellets in Small and Medium Scale Furnaces

Kienzl N, Margaritis N, Isemin R, Zaychenko V, Strasser C, Kourkoumpas DS, Grammelis P, Klimov D, Larina O, Sytchev G, Mikhalev A. Applicability of Torrefied Sunflower Husk Pellets in Small and Medium Scale. Waste and Biomass Valorization. 2020;275:122882.

External Link

Details

The aim of this paper is to test the applicability of upgraded agricultural biomass feedstock such as torrefied sunflower husks during combustion in small and medium heating applications. Sunflower husk is formed in large quantities at enterprises producing sunflower oil and can be used as biofuel. However, big problems arise due to the low bulk density of husks and the rapid growth of ash deposits on the heating surfaces of boilers. In order to solve these problems, it was proposed to produce pellets from husks, and to subject these pellets to torrefaction. After torrefaction, net calorific value was increased by 29% while the risk of high temperature corrosion of boilers was reduced. Signs of ash softening neither occurred in combustion of raw nor in combustion of torrefied sunflower husk pellets. High aerosol emissions, already present in raw sunflower husk pellets, could not be mitigated by torrefaction. First combustion results at medium scale furnaces indicated that sunflower husk pellets (both raw and torrefied) in a commercial boiler < 400 kW, operated in a mode with low primary zone temperatures (< 850 °C), meet current emission limits. Regarding the future upcoming emission limits according to the European Medium Combustion Plant Directive, additional measures are required in order to comply with the dust limits.


Conference contributions | 2020

BIOCHAR - Reaction kinetics under gasification conditions by experimental tests with TGA

Lagler J, Martini S, Kienzl N, Loder A. BIOCHAR - Reaction kinetics under gasification conditions by experimental tests with TGA. 6th Central European Biomass Conference. 2020. Graz.

Download PDF

Details


Conference contributions | 2020

Biofuels for transport decarbonisation Country specific assessment for Finland, Sweden, Germany, USA and Brazil

Matschegg D, Biofuels for transport decarbonisation Country specific assessment for Finland, Sweden, Germany, USA and Brazil. 6th Central European Biomass Conference, 22-24 January 2020, Graz.

Download PDF

Details


Peer Reviewed Scientific Journals | 2020

Biomass pyrolysis TGA assessment with an international round robin

Anca-Couce A, Tsekos C, Retschitzegger S, Zimbardi F, Funke A, Banks S, Kraia T, Marques P, Scharler R, de Jong W, Kienzl N. Biomass pyrolysis TGA assessment with an international round robin.Fuel.2020;276:118002.https://doi.org/10.1016/j.fuel.2020.118002

External Link

Details

The large variations found in literature for the activation energy values of main biomass compounds (cellulose, hemicellulose and lignin) in pyrolysis TGA raise concerns regarding the reliability of both the experimental and the modelling side of the performed works. In this work, an international round robin has been conducted by 7 partners who performed TGA pyrolysis experiments of pure cellulose and beech wood at several heating rates. Deviations of around 20 – 30 kJ/mol were obtained in the activation energies of cellulose, hemicellulose and conversions up to 0.9 with beech wood when considering all experiments. The following method was employed to derive reliable kinetics: to first ensure that pure cellulose pyrolysis experiments from literature can be accurately reproduced, and then to conduct experiments at different heating rates and evaluate them with isoconversional methods to detect experiments that are outliers and to validate the reliability of the derived kinetics and employed reaction models with a fitting routine. The deviations in the activation energy values for the cases that followed this method, after disregarding other cases, were of 10 kJ/mol or lower, except for lignin and very high conversions. This method is therefore proposed in order to improve the consistency of data acquisition and kinetic analysis of TGA for biomass pyrolysis in literature, reducing the reported variability.


Conference contributions | 2020

Challenges and recent results in microalgae research

Meixner K. Challenges and recent results in microalgae research. 6th Central european biomass conference, 2020, Graz.

Download PDF

Details


Conference contributions | 2020

CleanAir by biomass

Sturmlechner R, Stressler H, Golicza L, Reichert G, Schwabl M, Höftberger E, Kelz J. CleanAir by biomass. 6th Central European Biomass Conference, 2020, Graz.

Download PDF

Details


Peer-reviewed publications | 2020

Combined influence of inorganics and transport limitations on the pyrolytic behaviour of woody biomass

Almuina-Villar H, Sommersacher P, Retschitzegger S, Anca-Couce A, Dieguez-Alonso A. Combined influence of inorganics and transport limitations on the pyrolytic behaviour of woody biomass. Chemical Engineering Transactions. 2020.80:73-78

External Link

Details

A deeper understanding and quantification on the influence of inorganic species on the pyrolysis process, combined with the presence of heterogeneous secondary reactions, is pursued in this study. Both chemical controlled and transport limited regimes are considered. The former is achieved in a thermogravimetric analyser (TGA) with fine milled biomass in the mg range, while the latter is investigated in a particle level reactor with spherical particles of different sizes. To account for the influence of inorganics, wood particles were washed and doped with KCl aqueous solutions, resulting in K concentrations in the final wood of around 0.5% and 5% on dry basis. Gas species and condensable volatiles were measured online with Fourier transform infrared (FTIR) spectroscopy and a non-dispersive infrared (NDIR) gas analyzer. The removal of inorganic species delayed the pyrolysis reaction to higher temperatures and lowered char yields. The addition of inorganics (K) shifted the devolatilization process to lower temperatures, increased char and water yields, and reduced CO production among others. Higher heating rates and temperatures resulted in lower char, water, and light condensable yields, but significantly higher CH4 and other light hydrocarbons, as well as CO. The increase in these yields can be attributed, at least in part, to the gas phase cracking reactions of the produced volatiles. Larger particle size increased the formation of char, CH4 and other light hydrocarbons, and light condensables for low and high pyrolysis temperatures, while reduced the release of CO2 and H2O. This novel data set allows to quantify the influence of each parameter and can be used as basis for the development of detailed pyrolysis models which can include both the influence of inorganics and transport limitations when coupled into particle models.


Peer Reviewed Scientific Journals | 2020

Consequential Life Cycle Assessment of energy generation from waste wood and forest residues: The effect of resource-efficient additives

Corona B, Shen L, Sommersacher P, Junginger M. Consequential Life Cycle Assessment of energy generation from waste wood and forest residues: The effect of resource-efficient additives. Journal of Cleaner Production 2020. 259:120948.

External Link

Details

Combustion of waste wood can cause slagging, fouling and corrosion which lead to boiler failure, affecting the energy efficiency and the lifetime of the power plant. Additivation with mineral and sulfur containing additives during waste wood combustion could potentially reduce these problems. This study aims at understanding the environmental impacts of using additives to improve the operational performance of waste wood combustion. The environmental profiles of four energy plants (producing heat and/or power), located in different European countries (Poland, Austria, Sweden and Germany), were investigated through a consequential life cycle assessment (LCA). The four energy plants are all fueled by waste wood and/or residues. This analysis explored the influences of applying different additives strategies in the four power plants, different wood fuel mixes and resulting direct emissions, to the total life cycle environmental impacts of heat and power generated. The impacts on climate change, acidification, particulate matter, freshwater eutrophication, human toxicity and cumulative energy demand were calculated, considering 1 GJ of exergy as functional unit. Primary data for the operation without additives were collected from the power plant operators, and emission data for the additives scenarios were collected from onsite measurements. A sensitivity analysis was conducted on the expected increase of energy efficiency. The analysis indicated that the use of gypsum waste, halloysite and coal fly ash decreases the environmental impacts of heat and electricity produced (average of 12% decrease in all impacts studied, and a maximum decrease of 121%). The decrease of impacts is mainly a consequence of the increase of energy generation that avoids the use of more polluting marginal technologies. However, impacts on acidification may increase (up to 120% increase) under the absence of appropriate flue gas cleaning systems. Halloysite was the additive presenting the highest benefits.


Peer Reviewed Scientific Journals | 2020

Control of biomass grate boilers using internal model control

Schörghuber C, Gölles M, Reichhartinger M, Horn M. Control of Biomass Grate Boilers using Internal Model Control. Control engineering practice. 2020.

External Link

Details

A new model-based control strategy for biomass grate boilers is presented in this paper. Internal model control is used to control four outputs of the plant and to achieve a control structure with fewer control parameters needing to be experimentally tuned. A nonlinear state–space model describing the essential behaviour of the biomass grate boiler is used for controller design. The inverse system dynamics representing the main part of internal model control are designed with the help of this model. In doing so the properties of differentially flat systems are used. Due to a time delayed input, the inverse system is determined only for three input output channels. The stabilization of the inverse system dynamics, however, is a challenging task. A stabilization method with the help of the time delayed input is suggested and a stability analysis is given. The new control strategy has only three parameters to be tuned, representing a major reduction of complexity in comparison to existing model-based approaches. Finally, experimental results of the implemented control strategy on representative biomass grate boiler with a nominal capacity of 180 kW are presented and compared to an existing model-based control strategy based on input output linearization. The experimental evaluation proves that it is possible to operate the biomass boiler in all load ranges with high efficiency and low pollutant emissions.


Peer Reviewed Scientific Journals | 2020

Correction to: Investigation of solid oxide fuel cell operation with synthetic biomass gasification product gases as a basis for enhancing its performance

Pongratz G, Subotić V, Schroettner H, Stoeckl B, Hochenauer C, Anca-Couce A, Scharler R. Correction to: Investigation of solid oxide fuel cell operation with synthetic biomass gasification product gases as a basis for enhancing its performance. Biomass Conversion and Biorefinery. 2020

External Link

Details

The authors want to acknowledge, that during the production of the final version of the publication the image for Figure 9 has been replaced with the image for Figure 12, however without changing the content of the paper. This issue is resolved in the current version of the publication.


Peer Reviewed Scientific Journals | 2020

Decentralized heating grid operation: A comparison of centralized and agent-based optimization

Lichtenegger K, Leitner A, Märzinger T, Mair C, Moser A, Wöss D, Schmidl C, Pröll T. Decentralized heating grid operation: A comparison of centralized and agent-based optimization. Sustainable Energy, Grids and Networks. 2020;2020(21).

External Link

Details

Moving towards a sustainable heat supply calls for decentralized and smart heating grid solutions. One promising concept is the decentralized feed-in by consumers equipped with their own small production units (prosumers). Prosumers can provide an added value regarding security of supply, emission reduction and economic welfare, but in order to achieve this, in addition to advanced hydraulic control strategies also superordinate control strategies and appropriate market models become crucial.

In this article we study methods to find a global optimum for the local energy community or at least an acceptable approximation to it. In contrast to standard centralized control approaches, based either on expert rules or mixed integer linear optimization, we adopt an agent-based, decentralized approach that allows for incorporation of nonlinear phenomena. While studied here in small-scale systems, this approach is particularly attractive for larger systems, since with an increasing number of interacting units, the optimization problem becomes more complex and the computational effort for centralized approaches increases dramatically.

The agent-based optimization approach is compared to centralized optimization of the same prosumer-based setting as well as to a purely central setup. The comparison is based on the quality of the optimization solution, the computational effort and the scalability. For the comparison of these three approaches, three different scenarios have been set up and analysed for four seasons. In this analysis, no approach has emerged as clearly superior to the others; thus each of them is justified in certain situations.


Peer Reviewed Scientific Journals | 2020

Detailed experimental investigation of the spatially distributed gas release and bed temperatures in fixed-bed biomass combustion with low oxygen concentration

Archan G, Anca-Couce A, Gregorc J, Buchmayr M, Hochenauer C, Gruber J, Scharler R. Detailed experimental investigation of the spatially distributed gas release and bed temperatures in fixed-bed biomass combustion with low oxygen concentration. Biomass and Bioenergy. 2020;141:105725

External Link

Details

This publication focuses on the experimental investigation of a novel small-scale fuel flexible biomass combustion technology with a fixed-bed employing a low oxygen concentration. It was obtained through a low primary air ratio and the additional supply of recirculated flue gas. The plant was operated with spruce wood chips, which contained three different mass fractions of water, and miscanthus pellets. All relevant components of the released gas above the fixed-bed were measured, as well as the 3D bed temperature distribution. The balances confirmed a high experimental data consistency. Therefore, it was possible to determine the location of the four different conversion zones inside the fixed-bed: drying, pyrolysis, char gasification and char oxidation. The reduction of CO2 to CO in the char reduction zone worked efficiently across the entire grate area. Furthermore, the results showed that the water mass fraction of the fuel did not influence the dry product gas composition, but significantly affected the location for the release of pyrolysis products such as tars. It was found that the low oxygen concentration in the fixed-bed combined with flue gas recirculation was an effective method to reduce bed temperatures and therefore its inorganic emissions while significantly increasing feedstock flexibility. The investigations provided fundamental findings on the conversion and release behavior of the new technology under real operating conditions and are very useful for further experimental work and CFD simulations targeting the reduction of PM and NOX emissions.


Conference contributions | 2020

Detailed investigations of high terpene concetrations in biogas laboratory trials

Knoll L, Sumethberger-Hasinger M, Nussbaumer M, Dalnodar D, Loibner A, Drosg B. Detailed investigations of high terpene concetrations in biogas laboratory trials. 6th Central European Biomass Conference, 22-24 January 2020, Graz.

Download PDF

Details


Conference Papers | 2020

Development and experimental validation of a linear state-space model for absorption heat pumping systems for model-based control strategies

Zlabinger S, Unterberger V, Gölles M, Horn M, Wernhart M, Rieberer R. Development and experimental validation of a linear state-space model for absorption heat pumping systems for model-based control strategies. International Sorption Heat Pump Conference 2020.

Details

Control strategies of absorption heat pumping systems (AHPS, comprising heat pumps and chillers) often
perform insufficiently well, since they usually do not explicitly consider the systems’ dynamics and crosscoupling effects. One promising approach to improve their performance is to apply model-based control strategies since they would allow for an explicit consideration of these system characteristics. Therefore, mathematically simple models of the system to be controlled are required. This contribution proposes a new approach for such a model for a H2O-LiBr AHPS. The model results from the linearization of a more complex, nonlinear simulation model, leading to a simple, but physically still meaningful linear state-space model structure. The experimental validation shows that the developed model describes the system’s dynamics and cross-coupling effects sufficiently well and indicates that it is suitable to serve as a basis for the development of a model-based control strategy for AHPS-


Conference contributions | 2020

Die Donau - Eine Chance für die Bioenergiebranche?

Dißauer C, Strasser C. Die Donau - Eine Chance für die Bioenergiebranche? 6th Central European Biomass Conference, 2020, Graz.

Download PDF

Details


Peer Reviewed Scientific Journals | 2020

Effects of Pyrolysis Conditions and Feedstocks on the Properties and Gasification Reactivity of Charcoal from Woodchips

Phounglamcheik A, Wang L, Romar H, Kienzl N, Broström M, Ramser K, Skreiberg Ø, Umeki K. Effects of Pyrolysis Conditions and Feedstocks on the Properties and Gasification Reactivity of Charcoal from Woodchips. Energy and Fuels. 2020;34(7):8353-8365.

External Link

Details

Pyrolysis conditions in charcoal production affect yields, properties, and further use of charcoal. Reactivity is a critical property when using charcoal as an alternative to fossil coal and coke, as fuel or reductant, in different industrial processes. This work aimed to obtain a holistic understanding of the effects of pyrolysis conditions on the reactivity of charcoal. Notably, this study focuses on the complex effects that appear when producing charcoal from large biomass particles in comparison with the literature on pulverized biomass. Charcoals were produced from woodchips under a variety of pyrolysis conditions (heating rate, temperature, reaction gas, type of biomass, and bio-oil embedding). Gasification reactivity of produced charcoal was determined through thermogravimetric analysis under isothermal conditions of 850 °C and 20% of CO2. The charcoals were characterized for the elemental composition, specific surface area, pore volume and distribution, and carbon structure. The analysis results were used to elucidate the relationship between the pyrolysis conditions and the reactivity. Heating rate and temperature were the most influential pyrolysis parameters affecting charcoal reactivity, followed by the reaction gas and bio-oil embedding. The effects of these pyrolysis conditions on charcoal reactivity could primarily be explained by the difference in the meso- and macropore volume and the size and structural order of aromatic clusters. The lower reactivity of slow pyrolysis charcoals also coincided with their lower catalytic inorganic content. The reactivity difference between spruce and birch charcoals appears to be mainly caused by the difference in catalytically active inorganic elements. Contrary to pyrolysis of pulverized biomass, a low heating rate produced a higher specific surface area compared with a high heating rate. Furthermore, the porous structure and the reactivity of charcoal produced from woodchips were influenced when the secondary char formation was promoted, which cannot be observed in pyrolysis of pulverized biomass.


Peer Reviewed Scientific Journals | 2020

Evaluation of heat transfer models at various fluidization velocities for biomass pyrolysis conducted in a bubbling fluidized bed

von Berg L, Soria-Verdugo A, Hochenauer C, Scharler R, Anca-Couce A. Evaluation of heat transfer models at various fluidization velocities for biomass pyrolysis conducted in a bubbling fluidized bed. International Journal of Heat and Mass Transfer. 2020;160:120175

External Link

Details

Four different models for heat transfer to the particles immersed in a fluidized bed were evaluated and implemented into an existing single particle model. Pyrolysis experiments have been conducted using a fluidized bed installed on a balance at different temperatures and fluidization velocities using softwood pellets. Using a heat transfer model applicable for fluidized beds, the single particle model was able to predict the experimental results of mass loss obtained in this study as well as experimental data from literature with a reasonable accuracy. A good agreement between experimental and modeling results was found for different reactor temperatures and configurations as well as different biomass types, particle sizes – in the typical range of pellets - and fluidization velocities when they were higher than . However, significant deviations were found for fluidization velocities close to minimum fluidization. Heat transfer models which consider the influence of fluidization velocity show a better agreement in this case although differences are still present.


Conference contributions | 2020

Evaluation of the Transient Behaviour of a Fixed-Bed Biomass Gasifier for Demand-Oriented Electricity Production

Hollenstein C, Zemann C, Antolini D, Patuzzi F, Martini S, Baratieri M, Gölles M. Evaluation of the Transient Behaviour of a Fixed-Bed Biomass Gasifier for Demand-Oriented Electricity Production. 28th European Biomass Conference & Exhibition. 6-9 July 2020.

Details

The majority of renewable energy technologies are volatile in nature. External factors such as weather conditions lead to fluctuations in their produced electricity and heat. This results in a demand either not being covered or dissatisfied since too much electricity and heat is produced in the energy system. Although energy storages can counteract these fluctuations, renewable energy technologies that are capable of producing energy on demand are needed as well. As such, technologies based on the thermochemical conversion of biomass are especially relevant as they are considered to be CO2-neutral. Although most existing implementations are based on combustion of biomass, fixed-bed biomass gasification is of growing relevance due to higher overall efficiencies and low pollutant emissions. Currently, fixed-bed biomass gasifiers are usually operated at steady-state operation to produce the maximum amount of energy possible. This contribution investigates, whether they can be used as a technology for demand-oriented electricity and heat production


Other publication | 2020

EVEmBi – Bestimmung von Methanemissionen aus Biogasanlagen und Reduktionsstrategien

Meixner K. EVEmBi – Bestimmung von Methanemissionen aus Biogasanlagen und Reduktionsstrategien. CEBC 2020

Download PDF

Details


Conference contributions | 2020

Experimentally verified dynamic simulation model of a NH3/H2O-absorption refrigeration system

Wernhart M, Rieberer R, Zlabinger S, Unterberger V, Gölles M. Experimentally verified dynamic simulation model of a NH3/H2O-absorption refrigeration system. In 14th IIR-Gustav Lorentzen Conference on Natural Refrigerants. International Institute of Refrigeration. 2020

Details