Sortierung Titel Year

Publikationen


Peer Reviewed Scientific Journals | 2022

A multi-layer model of stratified thermal storage for MILP-based energy management systems

Muschick D, Zlabinger S, Moser A, Lichtenegger K, Gölles M. A multi-layer model of stratified thermal storage for MILP-based energy management systems. Applied Energy. 2022 May 15;315.118890. https://doi.org/10.1016/j.apenergy.2022.118890

External Link

Details

Both the planning and operation of complex, multi-energy systems increasingly rely on optimization. This optimization requires the use of mathematical models of the system components. The model most often used to describe thermal storage, and especially in the common mixed-integer linear program (MILP) formulation, is a simple integrator model with a linear loss term. This simple model has multiple inherent drawbacks since it cannot be applied to represent the temperature distribution inside of the storage unit. In this article, we present a novel approach based on multiple layers of variable size but fixed temperature. The model is still linear, but can be used to describe the most relevant physical phenomena: heat losses, axial heat transport, and, at least qualitatively, axial heat conduction. As an additional benefit, this model makes it possible to clearly distinguish between heat available at different temperatures and thus suitable for different applications, e.g., space heating or domestic hot water. This comes at the cost of additional binary decision variables used to model the resulting hybrid linear dynamics, requiring the use of state-of-the-art MILP solvers to solve the resulting optimization problems. The advantages of the more detailed model are demonstrated by validating it against a standard model based on partial differential equations and by showing more realistic results for a simple energy optimization problem.


Peer Reviewed Scientific Journals | 2022

Ash transformation during single-pellet gasification of sewage sludge and mixtures with agricultural residues with a focus on phosphorus

Hannl TK, Häggström G, Hedayati A, Skoglund N, Kuba M, Marcus Öhman. Ash transformation during single-pellet gasification of sewage sludge and mixtures with agricultural residues with a focus on phosphorus. Fuel Processing Technology. March 2022.227:107102.

External Link

Details

The recovery of phosphorus (P) from sewage sludge ashes has been the focus of recent research due to the initiatives for the use of biogenic resources and resource recovery. This study investigates the ash transformation chemistry of P in sewage sludge ash during the co-gasification with the K-Si- and K-rich agricultural residues wheat straw and sunflower husks, respectively, at temperatures relevant for fluidized bed technology, namely 800 °C and 950 °C. The residual ash was analyzed by ICP­AES, SEM/EDS, and XRD, and the results were compared to results of thermochemical equilibrium calculations. More than 90% of P and K in the fuels were retained in the residual ash fraction, and significant interaction phenomena occurred between the P-rich sewage sludge and the K-rich ash fractions. Around 45–65% of P was incorporated in crystalline K-bearing phosphates, i.e., K-whitlockite and CaKPO4, in the residual ashes with 85–90 wt% agricultural residue in the fuel mixture. In residual ashes of sewage sludge and mixtures with 60–70 wt% agricultural residue, P was mainly found in Ca(Mg,Fe)-whitlockites and AlPO4. Up to about 40% of P was in amorphous or unidentified phases. The results show that gasification provides a potential for the formation of K-bearing phosphates similar to combustion processes.


Other Publications | 2022

Energiegemeinschaften im Tourismussektor

External Link

Details

Der Leitfaden „Energiegemeinschaften im Tourismus“ zeigt, welche Möglichkeiten Energiegemeinschaften für Tourismusbetriebe, ihre Beschäftigten und Menschen, die in Tourismusregionen leben, bieten können und wie eine Energiegemeinschaft ins Leben gerufen werden
kann.


Conference contributions | 2022

FAULT DETECTIVE: FAULT DETECTION FOR SOLAR THERMAL SYSTEMS

Feierl L, Bolognesi T, Unterberger V, Geatani M, Gerardts B. FAULT DETECTIVE: FAULT DETECTION FOR SOLAR THERMAL SYSTEMS. ISEC 2022. 05 - 07. April 2022, Graz. Poster presentation.

Details


Conference contributions | 2022

IEA SHC Task 68: Efficient Solar District Heating Systems

Unterberger V, Berberich M, Putz S, Byström J, Gölles M. IEA SHC Task 68: Efficient Solar District Heating Systems. ISEC 2022. 5 - 07. April 2022, Graz. Poster presentation.

Download PDF

Details


Peer Reviewed Scientific Journals | 2022

Real coupling of solid oxide fuel cells with a biomass steam gasifier: Operating boundaries considering performance, tar and carbon deposition analyses

Pongratz G, Subotić V, von Berg L, Schroettner H, Hochenauer C, Martini S, Hauck M, Steinruecken B, Skrzypkiewicz M, Kupecki J, Scharler R, Anca-Couce A. Real coupling of solid oxide fuel cells with a biomass steam gasifier: Operating boundaries considering performance, tar and carbon deposition analyses. Fuel. 15 May 2022.316:123310.

External Link

Details

Solid oxide fuel cells are a promising alternative to gas engines for combined heat and power production based on biomass gasification. The technical complexity of realizing gasifier – fuel cell couplings has limited the number of experiments conducted in the past. However, results from such experiments are of high importance for the evaluation of tar thresholds and operating conditions ensuring a stable operation of fuel cells. For the first time, it was possible to demonstrate for dozens of hours the operation of solid oxide fuel cells with real product gas from steam gasification with a steam-to-carbon ratio of 2 and a typical tar content for fluidized bed gasification. Four coupling experiments with industrial-relevant cell designs were conducted, demonstrating a stable operation for 30 h without structural degradation of the anodes for cells with nickel/ceria- and nickel/zirconia-based anodes at 800°C and 850°C, if heavy tars were partially removed (2.8–3.7 g·Nm−3 gravimetric tars). Raw gas operation (4.6–4.8 g·Nm−3 gravimetric tars) led to metal dusting effects on nickel contact meshes and nickel/zirconia-based anodes, whereas nickel/ceria-based anodes were less affected. Carbon deposited on the alumina support in all experiments whereby a change from pyrolytic to graphitic structure could be observed when increasing the temperature from 800°C to 850°C, thus significantly reducing the risk for blockages in the flow channels. Moreover, high tar and benzene conversion rates were observed. Concluding, operating temperatures of 850°C and the removal only of heavy tars can enable stable long-term operation with a tar-laden steam gasifier product gas, even without increasing the steam-to-carbon ratio to values exceeding two.


Peer Reviewed Scientific Journals | 2022

Self-Heating of Biochar during Postproduction Storage by O2 Chemisorption at Low Temperatures

Phounglamcheik A, Johnson N, Kienzl N, Strasser C, Umeki K. Self-Heating of Biochar during Postproduction Storage by O2 Chemisorption at Low Temperatures. Energies. 2022.15:380

External Link

Details

Biochar is attracting attention as an alternative carbon/fuel source to coal in the process industry and energy sector. However, it is prone to self-heating and often leads to spontaneous ignition and thermal runaway during storage, resulting in production loss and health risks. This study investigates biochar self-heating upon its contact with O2 at low temperatures, i.e., 50–300 °C. First, kinetic parameters of O2 adsorption and CO2 release were measured in a thermogravimetric analyzer using biochar produced from a pilot-scale pyrolysis process. Then, specific heat capacity and heat of reactions were measured in a differential scanning calorimeter. Finally, a one-dimensional transient model was developed to simulate self-heating in containers and gain insight into the influences of major parameters. The model showed a good agreement with experimental measurement in a closed metal container. It was observed that char temperature slowly increased from the initial temperature due to heat released during O2 adsorption. Thermal runaway, i.e., self-ignition, was observed in some cases even at the initial biochar temperature of ca. 200 °C. However, if O2 is not permeable through the container materials, the temperature starts decreasing after the consumption of O2 in the container. The simulation model was also applied to examine important factors related to self-heating. The results suggested that self-heating can be somewhat mitigated by decreasing the void fraction, reducing storage volume, and lowering the initial char temperature. This study demonstrated a robust way to estimate the cooling demands required in the biochar production process.


Peer Reviewed Scientific Journals | 2022

Smart control of interconnected district heating networks on the example of “100% Renewable District Heating Leibnitz”

Kaisermayer V, Binder J, Muschick D, Beck G, Rosegger W, Horn M, Gölles M, Kelz J, Leusbrock I. Smart control of interconnected district heating networks on the example of “100% Renewable District Heating Leibnitz”. Smart Energy. 2022 Apr 7. 100069. https://doi.org/10.1016/j.segy.2022.100069

External Link

Details

District heating (DH) networks have the potential for intelligent integration and combination of renewable energy sources, waste heat, thermal energy storage, heat consumers, and coupling with other sectors. As cities and municipalities grow, so do the corresponding networks. This growth of district heating networks introduces the possibility of interconnecting them with neighbouring networks. Interconnecting formerly separated DH networks can result in many advantages concerning flexibility, overall efficiency, the share of renewable sources, and security of supply. Apart from the problem of hydraulically connecting the networks, the main challenge of interconnected DH systems is the coordination of multiple feed-in points. It can be faced with control concepts for the overall DH system which define optimal operation strategies. This paper presents two control approaches for interconnected DH networks that optimize the supply as well as the demand side to reduce CO2 emissions. On the supply side, an optimization-based energy management system defines operation strategies based on demand forecasts. On the demand side, the operation of consumer substations is influenced in favour of the supply using demand side management. The proposed approaches were tested both in simulation and in a real implementation on the DH network of Leibnitz, Austria. First results show a promising reduction of CO2 emissions by 35% and a fuel cost reduction of 7% due to better utilization of the production capacities of the overall DH system.


Peer Reviewed Scientific Journals | 2022

Solid oxide fuel cell operation with biomass gasification product gases: Performance- and carbon deposition risk evaluation via a CFD modelling approach

Pongratz G, Subotić V, Hochenauer C, Scharler R, Anca-Couce A. Solid oxide fuel cell operation with biomass gasification product gases: Performance- and carbon deposition risk evaluation via a CFD modelling approach. 1 April 2022. 244.

External Link

Details

Solid oxide fuel cell (SOFC) models used in the past for biomass-to-power plant simulations are limited in their predictability of the carbon deposition risk. In this work, industrial-relevant cell designs were modeled in 2D-CFD considering detailed reaction kinetics which allowed more accurate performance simulations and carbon deposition risk assessments. Via a parametric study, the influence of varying cell operating conditions on the cell performance and carbon deposition risk was quantified when utilizing product gases from steam- and air gasification with varying steam addition. Considering the results from this parameter study and carbon deposition risk assessment, recommendations for promising gasifier-SOFC configurations and cell operating points for stable long-term operation are presented. For smaller-scale biomass-to-power systems, the utilization of product gas from air gasification in anode supported cells with Ni/zirconia-based anode can be recommended, with only moderate steam dilution of the product gas at 750°C cell operating temperature. For larger scales, steam gasification might be meaningful, offering a generally higher electrical efficiency and power output in fuel cells than air gasification. However, a higher risk for carbon deposition could be determined in comparison to air gasification. Hence, a cell temperature of 850°C besides the use of cells with Ni/ceria-based anodes is recommended.


Conference contributions | 2022

Success Factors and Barriers for Integrated District Heating Networks

Muschick D, Cronbach D, Ianakiev A, Kallert A, Schmidt R-R, Sorknaes P et al. Success Factors and Barriers for Integrated District Heating Networks. 2022. Postersitzung präsentiert bei 2nd International Sustainable Energy Conference , Graz, Österreich.

Details


Peer Reviewed Scientific Journals | 2022

Unknown input observer design for linear time-invariant multivariable systems based on a new observer normal form

Niederwieser H, Tranninger M, Seeber R, Reichhartinger M. Unknown input observer design for linear time-invariant multivariable systems based on a new observer normal form. International Journal of Systems Science. 2022 Apr 6. https://doi.org/10.1080/00207721.2022.2046201

External Link

Details


Peer Reviewed Scientific Journals | 2021

A review on bed material particle layer formation and its positive influence on the performance of thermo-chemical biomass conversion in fluidized beds

Kuba M, Skoglund N, Öhman M, Hofbauer H. A review on bed material particle layer formation and its positive influence on the performance of thermo-chemical biomass conversion in fluidized beds.Fuel.2021.291:120214. https://doi.org/10.1016/j.fuel.2021.120214

External Link

Details

Bed material particle layer formation plays a significant role in thermo-chemical conversion of biomass. The interaction between biomass ash and bed material in fluidized bed conversion processes has been described for a variety of different applications and spans from fundamental research of formation mechanisms to effects of this layer formation on long-term operation in industrial-scale. This review describes the current state of the research regarding the mechanisms underlying layer formation and the positive influence of bed material particle layer formation on the operation of thermo-chemical conversion processes. Thus, the main focus lies on its effect on the catalytic activity towards gasification reactions and the impact on oxygen transport in chemical looping combustion. The review focuses on the most commonly investigated bed materials, such as quartz, feldspar or olivine. While the most relevant results for both the underlying mechanisms and the subsequently observed effects on the operation are presented and discussed, knowledge gaps where further research is necessary are identified and described.


Peer Reviewed Scientific Journals | 2021

Advanced Optimal Planning for Microgrid Technologies including Hydrogen and Mobility at a real Microgrid Testbed

Mansoor M, Stadler M, Auer H, Zellinger M. Advanced Optimal Planning for Microgrid Technologies including Hydrogen and Mobility at a real Microgrid Testbed. International Journal of Hydrogen Energy.2021.

External Link

Details

This paper investigates the optimal planning of microgrids including the hydrogen energy system through mixed-integer linear programming model. A real case study is analyzed by extending the only microgrid lab facility in Austria. The case study considers the hydrogen production via electrolysis, seasonal storage and fueling station for meeting the hydrogen fuel demand of fuel cell vehicles, busses and trucks. The optimization is performed relative to two different reference cases which satisfy the mobility demand by diesel fuel and utility electricity based hydrogen fuel production respectively. The key results indicate that the low emission hydrogen mobility framework is achieved by high share of renewable energy sources and seasonal hydrogen storage in the microgrid. The investment optimization scenarios provide at least 66% and at most 99% carbon emission savings at increased costs of 30% and 100% respectively relative to the costs of the diesel reference case (current situation).


Other publication | 2021

Algae4Fish - Video

External Link

Details


Peer Reviewed Scientific Journals | 2021

An adaptive short-term forecasting method for the energy yield of flat-plate solar collector systems

Unterberger V, Lichtenegger K, Kaisermayer V, Gölles M, Horn M. An adaptive short-term forecasting method for the energy yield of flat-plate solar collector systems. Applied Energy. 2021 Apr 16;2021(293). https://doi.org/10.1016/j.apenergy.2021.116891

External Link

Details

The number of large-scale solar thermal installations has increased rapidly in Europe in recent years, with 70 % of these systems operating with flat-plate solar collectors. Since these systems cannot be easily switched on and off but directly depend on the solar radiation, they have to be combined with other technologies or integrated in large energy systems. In order to most efficiently integrate and operate solar systems, it is of great importance to consider their expected energy yield to better schedule heat production, storage and distribution. To do so the availability of accurate forecasting methods for the future solar energy yield are essential. Currently available forecasting methods do not meet three important practical requirements: simple implementation, automatic adaption to seasonal changes and wide applicability. For these reasons, a simple and adaptive forecasting method is presented in this paper, which allows to accurately forecast the solar heat production of flat-plate collector systems considering weather forecasts. The method is based on a modified collector efficiency model where the parameters are continuously redetermined to specifically consider the influence of the time of the day. In order to show the wide applicability the method is extensively tested with measurement data of various flat-plate collector systems covering different applications (below 200 Celsius), sizes and orientations. The results show that the method can forecast the solar yield very accurately with a Mean Absolute Range Normalized Error (MARNE) of about 5 % using real weather forecasts as inputs and outperforms common forecasting methods by being nearly twice as accurate.


Peer Reviewed Scientific Journals | 2021

Analysing price cointegration of sawmill by-products in the forest-based sector in Austria

Fuhrmann M, Dißauer C, Strasser C, Schmid E. Analysing price cointegration of sawmill by-products in the forest-based sector in Austria. Forest Policy and Economics. 2021.131:102560.

External Link

Details

Empirical analyses of interlinkages and price dependencies in the forest-based sector support the forecast of market developments and the design of efficient utilization pathways. This article aims at analysing price cointegration between roundwood (sawlogs, pulpwood), sawmill by-products (sawdust, wood chips) and wood products (pellets, particle board) in the forest-based sector in Austria. Monthly price data for the period 2005–2019 were used for the following statistical tests: (1) The Augmented-Dickey-Fuller and Zivot-Andrews unit root tests were conducted to investigate stationarity of the data; (2) The Johansen Cointegration test was pairwise applied to price time series; (3) The Granger Causality test was used for cointegrated time series to examine which one is price leading. Furthermore, sawmill by-product prices were modelled as Vector Error Correction Models (VECM) to analyse their common behaviour. The dataset was divided to a training (2005–2017) and test (2018–2019) subset to assess the prediction accuracy of the models. The training data were used to estimate a VAR model as basis for forecasts, which were compared to the test data. Results show that sawdust prices are cointegrated and thus modelled with pellet and particle board prices. In contrast, wood chips are used for several applications and thus prices are cointegrated and modelled with prices of sawlogs, pulpwood, pellets and particle board. The comparison with the test data showed that forecasts were able to predict data from 2018 to 2019 well. However, a decrease in prices, starting in 2019 and intensified by the Covid-19 pandemic, could not be fully captured by these forecasts.


Peer Reviewed Scientific Journals | 2021

Analysis of H2S-related short-term degradation and regeneration of anode- and electrolyte supported solid oxide fuel cells fueled with biomass steam gasifier product gas

Pongratz G, Subotić V, Schroettner H, Hochenauer C, Skrzypkiewicz M, Kupecki J, Anca-Couce A, Scharler R. Analysis of H2S-related short-term degradation and regeneration of anode- and electrolyte supported solid oxide fuel cells fueled with biomass steam gasifier product gas. Energy.2021.218:119556.

External Link

Details

Using solid oxide fuel cells in biomass gasification based combined heat and power production is a promising option to increase electrical efficiency of the system. For an economically viable design of gas cleaning units, fuel cell modules and further development of suitable degradation detection methods, information about the behavior of commercially available cell designs during short-term poisoning with H2S can be crucial. This work presents short-term degradation and regeneration analyses of industrial-relevant cell designs with different anode structure and sulfur tolerance fueled with synthetic product gas from wood steam gasification containing 1 to 10 ppmv of H2S at 750°C and 800°C. Full performance regeneration of both cell types was achieved in all operating points. The high H2O content and avoided fuel depletion may have contributed to a lower performance degradation and better regeneration of the cells. A strong influence of the catalytically active anode volume on poisoning and regeneration behavior was quantified, thereby outlining the importance of considering the anode structure besides the sulfur tolerance of the anode material. Hence, cells with less sulfur tolerant anode material but larger anode volume might outperform cells less sensitive to sulfur in the case of an early detection of a gas cleaning malfunction.


Peer Reviewed Scientific Journals | 2021

Ash transformation during single-pellet gasification of agricultural biomass with focus on potassium and phosphorus

Hedayati A, Sefidari H, Boman C, Skoglund N, Kienzl N, Öhman M. Ash transformation during single-pellet gasification of agricultural biomass with focus on potassium and phosphorus. Fuel Processing Technology. 15 June 2021.217:106805

External Link

Details

Agricultural biomasses and residues can play an important role in the global bioenergy system but their potential is limited by the risk of several ash-related problems such as deposit formation, slagging, and particle emissions during their thermal conversion. Therefore, a thorough understanding of the ash transformation reactions is required for this type of fuels. The present work investigates ash transformation reactions and the release of critical ash-forming elements with a special focus on K and P during the single-pellet gasification of different types of agricultural biomass fuels, namely, poplar, grass, and wheat grain residues. Each fuel was gasified as a single pellet at three different temperatures (600, 800, and 950 °C) in a Macro-TGA reactor. The residues from different stages of fuel conversion were collected to study the gradual ash transformation. Characterization of the residual char and ash was performed employing SEM-EDS, XRD, and ICP with the support of thermodynamic equilibrium calculations (TECs). The results showed that the K and P present in the fuels were primarily found in the residual char and ash in all cases for all studied fuels. While the main part of the K release occurred during the char conversion stage, the main part of the P release occurred during the devolatilization stage. The highest releases – less than 18% of P and 35% of K – were observed at the highest studied temperature for all fuels. These elements were present in the residual ashes as K2Ca(CO3)2 and Ca5(PO4)3OH for poplar; K-Ca-rich silicates and phosphosilicates in mainly amorphous ash for grass; and an amorphous phase rich in K-Mg-phosphates for wheat grain residues.


Other Presentations | 2021

Betrieb verbundener Nahwärmenetze mit getrennten Eigentümern

Zemann C, Muschick D, Kaisermayer V, Gölles M. Betrieb verbundener Nahwärmenetze mit getrennten Eigentümern. QM Heizwerke Fachtagung, Bad Vöslau, 14. Oktober, 2021. (oral presentation)

Download PDF

Details

Warum ist es sinnvoll, Wärmenetze zu verbinden?

  • Erläuterung am Beispiel des Projekts Thermaflex
  • Drei Wärmenetze bei Leibnitz in der Steiermark.
  • Sind gewachsen und haben die Grenzen ihrer Nachbar-Wärmenetze erreicht.
  • Die Wärmenetze werden durch zwei getrennte Eigentümer betrieben.

Peer Reviewed Scientific Journals | 2021

Bioenergy technologies, uses, market and future trends with Austria as a case study

Anca-Couce A, Hochenauer C, Scharler R. Bioenergy technologies, uses, market and future trends with Austria as a case study. Renewable and Sustainable Energy Reviews.2021;135:110237.

External Link

Details

The current bioenergy uses and conversion technologies as well as future trends for the production of heat, power, fuels and chemicals from biomass are reviewed. The focus is placed in Austria, which is selected due to its high bioenergy utilization, providing 18.4% of the gross energy final consumption in 2017, and its strong industrial and scientific position in the field. The most common bioenergy application in Austria is bioheat with 170 PJ in 2017 mainly obtained from woody biomass combustion, followed by biofuels with 21 PJ and bioelectricity with 17 PJ. Bioheat has a stable market, where Austrian manufacturers of boilers and stoves have a strong position exporting most of their production. Future developments in bioheat production should go in the line of further reducing emissions, increasing feedstock flexibility and coupling with other renewables. For bioelectricity and biofuels, the current framework does not promote the growth of the current main technologies, i.e. combined heat and power (CHP) based on biomass combustion or biogas and first generation biofuels. However, an increase in all bioenergy uses is required to achieve the Austrian plan to be climate neutral in 2040. The current initiatives and future possibilities to achieve this increase are presented and discussed, e.g. mandatory substitution of old oil boilers, production of biomethane and early commercialization of CHP with a high efficiency or demonstration of advanced biofuels production based on gasification.


Peer Reviewed Scientific Journals | 2021

Categorization of small-scale biomass combustion appliances by characteristic numbers

Feldmeier S, Schwarz M, Wopienka E, Pfeifer C. Categorization of small-scale biomass combustion appliances by characteristic numbers. Renewable Energy. 2021.163:2128-2136.

External Link

Details

The market offers a broad range of different combustion appliances dedicated to residential heating with biomass. The effect of fuel properties on the formation of slag and emissions varies and the technology influences the impact to a certain extent. The applicability of biomass fuels is not only determined by operational settings but also by the design of boiler components as grate area and combustion chamber. Aspects as the fuel load on the grate, residence time, geometry of grate and combustion chamber design, as well as feeding and de-ashing influence the extent of slag formation and emission release. The determination of characteristic numbers by means of constructional measures allows a systematic comparison and - in a further step - an assessment/categorization of combustion technologies. After conducting a boiler survey relevant parameters regarding grate, combustion chamber, feeding, and ash removal were gathered. Characteristic numbers were specified in order to compare technological aspects. The results of this study allow the investigation of the influence of the combustion technology on the performance. They will assist the systematic and targeted design of small-scale boilers and the optimization of combustion appliances in future, especially when it comes to fuel-flexibility.


Peer Reviewed Scientific Journals | 2021

Combustion of poultry litter and mixture of poultry litter with woodchips in a fixed bed lab-scale batch reactor

Katsaros G, Sommersacher P, Retschitzegger S, Kienzl N, Tassou SA, Pandey DS. Combustion of poultry litter and mixture of poultry litter with woodchips in a fixed bed lab-scale batch reactor. Fuel. 2021.286.119310.

External Link

Details

Experiments have been conducted in a batch fixed bed lab-scale reactor to investigate the combustion behaviour of three different biomass fuels, poultry litter (PL), blend of PL with wood chips (PL/WC) and softwood pellets (SP). Analysis of the data gathered after completion of the test runs, provided useful insights about the thermal decomposition behaviour of the fuels, the formation of N gaseous species, the release of ash forming elements and the estimation of aerosol emissions. It was observed that the N gaseous species are mainly produced during the devolatilisation phase. Hydrogen cyanide (HCN) was the predominant compound in the case of SP combustion, whereas ammonia (NH3) displayed the highest concentration during the combustion of PL and blend (PL/WC). With reference to ash forming elements, the release rates of potassium (K) and sodium (Na) range between 15–50% and 20–37% respectively, whereas the release rate of sulphur (S) falls between 54–92%. Chlorine (Cl) presents very high release rate for all tested fuels acquiring values greater than 85%, showing the volatile nature of the specific compound. The maximum potential of aerosol emissions was estimated based on the calculation of ash forming elements. In particular, during PL combustion the maximum aerosol emissions were observed, 2806 mg/Nm3 (dry flue gas, 13 vol% O2), mainly influenced by the release rate of K in the gas phase. Fuel indexes for the pre-evaluation of combustion related challenges such as NOx emissions, potential for aerosols formation, corrosion risk, and ash melting behaviour have also been investigated.


Technical Reports | 2021

Control of DHC networks and Reduction of the operating temperatures in DH systems

Task 55 Towards the Integration of Large SHC Systems into DHC Networks

Gölles M, Muschick D, Unterberger V, Leoni P, Schmidt R, Lennermo G. "Control of DHC networks and Reduction of the operating temperatures in DH systems". EA SHC FACTSHEET 55.A-D4.2. Date of Publication: 28.01.2021. https://task55.iea-shc.org/fact-sheets

External Link

Details

Overview on different approaches for the control of the heat distribution networks in case of the integration of large-scale solar thermal systems, and different possibilities for the reduction of the operating temperatures in DH systems.


Technical Reports | 2021

Control of large-scale solar thermal plants

Task 55 Towards the Integration of Large SHC Systems into DHC Networks

Gölles M, Unterberger V. "Control of large-scale solar thermal plants". IEA SHC FACTSHEET 55.B-D3.1. Date of Publication: 28.01.2021. https://task55.iea-shc.org/fact-sheets

External Link

Details

Overview on the control of large-scale thermal plants, limited to plants feeding into DH networks as well as theirkey components, i.e. the actual collector circuit and the heat exchanger between primary and secondary circuit.


Peer Reviewed Scientific Journals | 2021

Correlations between tar content and permanent gases as well as reactor temperature in a lab-scale fluidized bed biomass gasifier applying different feedstock and operating conditions

von Berg L, Pongratz G, Pilatov A, Almuina-Villar H, Scharler R, Anca-Couce A. Correlations between tar content and permanent gases as well as reactor temperature in a lab-scale fluidized bed biomass gasifier applying different feedstock and operating conditions.Fuel.2021.305:121531

External Link

Details

The major problem of fluidized bed biomass gasification is the high tar contamination of the producer gas which is associated with the complex and time-consuming sampling and analysis of these tars. Therefore, correlations to predict the tar content are a helpful tool for the development and operation of biomass gasifiers. Correlations between tars and gas composition as well as reactor temperature derived for a steam-blown lab-scale bubbling fluidized bed gasifier are investigated in this study to assess their applicability. A comprehensive data set containing over 80 experimental points was obtained for various operation conditions, including variations in temperature from 700 to 800 °C, feedstock, amount of steam for fluidization, as well as the addition of oxygen. Linear correlations between tar and permanent gases show good accuracy for H2 and CH4 when using pure steam. However, experiments conducted with steam-oxygen mixtures show high deviations for the CH4-based correlation and smaller but still significant deviations for the H2-based correlation. No relation between tar and CO or CO2 was found. The correlation between tar and temperature shows highest accuracy, including good agreement with the steam-oxygen experiments. All tar correlations showed useful results over a broad operating range. However, significant deviations can be obtained when considering just one gas compound. Therefore, a combination of different correlations considering gas components and temperature seems to be the best method of tar prediction. This leads to a powerful tool for fast online tar monitoring for a broad range of operating conditions, once a calibration measurement was conducted.