Publication | Other Publications

State-of-the-art and comparison of incineration and gasification of residues and waste

Published 2009

Citation: Wilk, V. State-of-the-art and comparison of incineration and gasification of residues and waste, Doctoral Thesis, Vienna University of Technology, Vienna, Austria, 2009.

Abstract

More and more waste is generated every year, which has to be disposed. There is a legal obligation to treat waste before it can be landfilled in the European Union. Thus, thermal waste treatment is a very important issue.
In this work two pathways of thermal waste treatment, incineration and gasification, are compared. For this purpose, literature on both technologies has been reviewed and the stateof‐art technology for waste incineration and gasification is presented. The comparison highlights the strengths and weaknesses of both technologies and identifies future potentials. In Europe waste incineration is the state‐of‐the‐art technology ensuring destruction of the pollutants and allowing recovery of the energy content of the waste. A waste incineration plant consists of a furnace, where the waste is incinerated and the chemically bonded energy of the waste is discharged as heat. The hot flue gases pass the heat to the water in the heating surfaces of the steam generator. The energy of the waste can be used for the generation of hot water, steam of electrical power. Then the flue gas has to be cleaned in the air pollution control system. Dust is precipitated, HCl and HF is removed in an acid scrubber and SO2 in an alkaline scrubber. A catalytic reaction destroys dioxins and furans and reduces the emissions of NOx. Due to waste incineration the volume of the residues, which have to be landfilled, is
reduced by 90%. The second pathway of thermal waste treatment is waste gasification, where solid carbonaceous materials are converted into combustible gases by reaction with gasification agents. Due to gas production, not only the energy content of the waste can be recovered but the product range is extended. The producer gas can be converted into heat and power in a conventional steam boiler but also combusted in gas engines or turbines with higher efficiencies. In a combined cycle plant the hot exhaust gas of the turbine can be used in a heat recovery steam generator to increase the efficiency even more. After further cleaning the producer gas is also a suitable feedstock for synthesis of liquid fuels, synthetic natural gas and other chemicals.
Waste gasification processes have been developed in the past, but the plants have been shut down because of economic reasons and/or technical problems. However, important research has been done in the field of biomass gasification and thus gasification technology has been improved markedly. The fluidised bed gasifier in Güssing is one of the most successful examples; this technology is about to be commercialised. Considering these developments, there is definitely interesting potential for waste gasification now and the design of a new waste gasification process based on the findings in biomass gasification will be the scope of future research work.


Filter

Kontaktieren Sie uns

Sie erreichen unser Office unter der Adresse office@best-research.eu

Nutzen Sie auch die Möglichkeit, direkt von dieser Webseite eine Nachricht an unsere Mitarbeiter*innen zu schicken. Schnell und unkompliziert.

Zur Team-Seite