Publication | Peer reviewed papers | Potentiale, Bioenergiesysteme, Logistik

Ash transformation during single-pellet gasification of agricultural biomass with focus on potassium and phosphorus

Published 15 June 2021

Citation: Hedayati A, Sefidari H, Boman C, Skoglund N, Kienzl N, Öhman M. Ash transformation during single-pellet gasification of agricultural biomass with focus on potassium and phosphorus. Fuel Processing Technology. 15 June 2021.217:106805

Abstract

Agricultural biomasses and residues can play an important role in the global bioenergy system but their potential is limited by the risk of several ash-related problems such as deposit formation, slagging, and particle emissions during their thermal conversion. Therefore, a thorough understanding of the ash transformation reactions is required for this type of fuels. The present work investigates ash transformation reactions and the release of critical ash-forming elements with a special focus on K and P during the single-pellet gasification of different types of agricultural biomass fuels, namely, poplar, grass, and wheat grain residues. Each fuel was gasified as a single pellet at three different temperatures (600, 800, and 950 °C) in a Macro-TGA reactor. The residues from different stages of fuel conversion were collected to study the gradual ash transformation. Characterization of the residual char and ash was performed employing SEM-EDS, XRD, and ICP with the support of thermodynamic equilibrium calculations (TECs). The results showed that the K and P present in the fuels were primarily found in the residual char and ash in all cases for all studied fuels. While the main part of the K release occurred during the char conversion stage, the main part of the P release occurred during the devolatilization stage. The highest releases – less than 18% of P and 35% of K – were observed at the highest studied temperature for all fuels. These elements were present in the residual ashes as K2Ca(CO3)2 and Ca5(PO4)3OH for poplar; K-Ca-rich silicates and phosphosilicates in mainly amorphous ash for grass; and an amorphous phase rich in K-Mg-phosphates for wheat grain residues.

External Link


Filter

Kontaktieren Sie uns

Sie erreichen unser Office unter der Adresse office@best-research.eu

Nutzen Sie auch die Möglichkeit, direkt von dieser Webseite eine Nachricht an unsere Mitarbeiter*innen zu schicken. Schnell und unkompliziert.

Zur Team-Seite