Sortierung Titel Year
  • 23 Einträge

Publikationen


Peer Reviewed Scientific Journals | 2020

Biomass pyrolysis TGA assessment with an international round robin

Anca-Couce A, Tsekos C, Retschitzegger S, Zimbardi F, Funke A, Banks S, Kraia T, Marques P, Scharler R, de Jong W, Kienzl N. Biomass pyrolysis TGA assessment with an international round robin.Fuel.2020;276:118002.https://doi.org/10.1016/j.fuel.2020.118002

External Link

Details

The large variations found in literature for the activation energy values of main biomass compounds (cellulose, hemicellulose and lignin) in pyrolysis TGA raise concerns regarding the reliability of both the experimental and the modelling side of the performed works. In this work, an international round robin has been conducted by 7 partners who performed TGA pyrolysis experiments of pure cellulose and beech wood at several heating rates. Deviations of around 20 – 30 kJ/mol were obtained in the activation energies of cellulose, hemicellulose and conversions up to 0.9 with beech wood when considering all experiments. The following method was employed to derive reliable kinetics: to first ensure that pure cellulose pyrolysis experiments from literature can be accurately reproduced, and then to conduct experiments at different heating rates and evaluate them with isoconversional methods to detect experiments that are outliers and to validate the reliability of the derived kinetics and employed reaction models with a fitting routine. The deviations in the activation energy values for the cases that followed this method, after disregarding other cases, were of 10 kJ/mol or lower, except for lignin and very high conversions. This method is therefore proposed in order to improve the consistency of data acquisition and kinetic analysis of TGA for biomass pyrolysis in literature, reducing the reported variability.


Peer Reviewed Scientific Journals | 2020

Correction to: Investigation of solid oxide fuel cell operation with synthetic biomass gasification product gases as a basis for enhancing its performance

Pongratz G, Subotić V, Schroettner H, Stoeckl B, Hochenauer C, Anca-Couce A, Scharler R. Correction to: Investigation of solid oxide fuel cell operation with synthetic biomass gasification product gases as a basis for enhancing its performance. Biomass Conversion and Biorefinery. 2020

External Link

Details

The authors want to acknowledge, that during the production of the final version of the publication the image for Figure 9 has been replaced with the image for Figure 12, however without changing the content of the paper. This issue is resolved in the current version of the publication.


Peer Reviewed Scientific Journals | 2020

Investigation of solid oxide fuel cell operation with synthetic biomass gasification product gases as a basis for enhancing its performance

Pongratz G, Subotić V, Schroettner H, Stoeckl B, Hochenauer C, Anca-Couce A, Scharler R. Investigation of solid oxide fuel cell operation with synthetic biomass gasification product gases as a basis for enhancing its performance. Biomass Conversion and Biorefinery.2020.

External Link

Details

Solid oxide fuel cells represent a promising technology to increase the electrical efficiency of biomass-based combined-heat-power systems in comparison to state-of-the-art gas engines, additionally providing high temperature heat. To identify favorable fuel gas compositions for an efficient coupling with gasifiers at low degradation risk is of major importance to ensure stability, reliability, and durability of the systems used, thus increasing attractiveness of electricity production from biomass. Therefore, this study presents a comprehensive analysis on the influence of main gas components from biomass gasification on the performance and efficiency of a cell relevant for real application. An industrial-size electrolyte supported single cell with nickel/gadolinium-doped ceria anode was selected showing high potential for gasifier-solid oxide fuel cell systems. Beneficial gas component ratios enhancing the power output and electric efficiency are proposed based on the experimental study performed. Furthermore, the degradation stability of a SOFC fueled with a synthetic product gas representing steam gasification of woody biomass was investigated. After 500 h of operation under load at a steam-to-carbon ratio of 2.25 in the fuel gas, no performance or anode degradation could be detected.


Peer Reviewed Scientific Journals | 2020

Transient CFD simulation of wood log combustion in stoves

Scharler R, Gruber T, Ehrenhöfer A, Kelz J, Mehrabian Bardar R, Bauer T, Hochenauer C, Anca-Couce A. Transient CFD simulation of wood log combustion in stoves. Renewable Energy 2020.145:651-662

External Link

Details

Wood log stoves are a common residential heating technology that produce comparably high pollutant emissions. Within this work, a detailed CFD model for transient wood log combustion in stoves was developed, as a basis for its optimization. A single particle conversion model previously developed by the authors for the combustion of thermally thick biomass particles, i.e. wood logs, was linked with CFD models for flow and turbulence, heat transfer and gas combustion. The sub-models were selected based on a sensitivity analysis and combined into an overall stove model, which was then validated by simulations of experiments with a typical wood log stove, including emission measurements. The comparison with experimental results shows a good accuracy regarding flue gas temperature as well as CO2 and O2 flue gas concentrations. Moreover, the characteristic behavior of CO emissions could be described, with higher emissions during the ignition and burnout phases. A reasonable accuracy is obtained for CO emissions except for the ignition phase, which can be attributed to model simplifications and the stochastic nature of stove operation. Concluding, the CFD model allows a transient simulation of a stove batch for the first time and hence, is a valuable tool for process optimization.


Peer Reviewed Scientific Journals | 2019

Applicability of the SOFC technology for coupling with biomass-gasifier systems: Short- and long-term experimental study on SOFC performance and degradation behaviour

Subotić V, Baldinelli A, Barelli L, Scharler R, Pongratz G, Hochenauer C, Anca-Couce A. Applicability of the SOFC technology for coupling with biomass-gasifier systems: Short- and long-term experimental study on SOFC performance and degradation behaviour. Applied Energy. 2019.256:113904

External Link

Details

Coupling biomass gasification with high temperature Solid Oxide Fuel Cells (SOFCs) is a promising solution to increase the share of renewables and reduce emissions. The quality of the producer gas used can, however, significantly impact the SOFC durability and reliability. The great challenge is to ensure undisturbed operation of such system and to find a trade-off between optimal SOFC operating temperature and system thermal integration, which may limit the overall efficiency. Thus, this study focuses on experimental investigation of commercial SOFC single cells of industrial size fueled with different representative producer gas compositions of industrial relevance at two relevant operating temperatures. The extensive experimental and numerical analyses performed showed that feeding SOFC with a producer gas from a downdraft gasifier, with hot gas cleaning, at an operating temperature of 750 °C represents the most favorable setting, considering system integration and the highest fuel utilization. Additionally, a 120 h long-term test was carried out, showing that a long-term operation is possible under stated operating conditions. Local degradation took place, which can be detected at an early stage using appropriate online-monitoring tools.


Peer Reviewed Scientific Journals | 2019

Experimental investigation on biomass shrinking and swelling behaviour: Particles pyrolysis and wood logs combustion

Caposciutti G, Almuina-Villar H, Dieguez-Alonso A, Gruber T, Kelz J, Desideri U, Hochenauer C, Scharler R, Anca-Couce A. Experimental investigation on biomass shrinking and swelling behaviour: Particles pyrolysis and wood logs combustion. Biomass and Bioenergy 2019;123:1-13.

External Link

Details

Biomass is a suitable energy source to reduce the carbon footprint and increase the use of renewable energy. However, the biomass exploitation is still slowed by many technical issues. In most practical applications, such as gasification or combustion devices, it is important to predict the fuel physical behavior in order to determine the emissions and heat release profile as well as for modeling and design purposes. Within this paper, the study of the dimensional evolution of a biomass fuel (beech wood) in pyrolysis and combustion processes were carried out with the use of the image analysis tool. Sizes from 15 mm to 300 mm characteristic length range were employed in the experiments and the collected data were related to the mass loss and temperature evolution of the biomass particle. It was found that for all the fuel sizes employed a similar volume reduction (60%–66%) was obtained at the end of pyrolysis. However, for the small particles with minor intra-particle gradients shrinkage took place mainly at the end of conversion, while for bigger particles the size variation patter was more linear. Furthermore, swelling was detected in the pyrolysis experiments, and it was higher for a bigger particle size, while cracking and fragmentation phenomena was observed for large wood logs combustion in the stove.


Peer Reviewed Scientific Journals | 2019

Single large wood log conversion in a stove: Experiments and modelling

Anca-Couce A, Caposciutti G, Gruber T, Kelz J, Bauer T, Hochenauer C, Scharler R. Single large wood log conversion in a stove: Experiments and modelling. Renewable Energy 2019.143:890-897.

External Link

Details

Natural draft wood log stoves for residential bioheat production are very popular due to the low fuel costs, the ecological aspect of a renewable energy source and the visual appeal of the flame. However, they have rather high pollutant emissions, specially of unburnt products. The description of large wood logs conversion in stoves needs to be improved to allow a process optimization which can reduce these emissions. The transient conversion of a single wood log in a stove is experimentally investigated with test runs quenching the log after defined time intervals and measuring the flue gas composition and temperatures in the log and stove. The experiments have been described with a volumetric single particle model, which predicts with good accuracy the log conversion until a time of around 30 min, when pyrolysis is almost ending. At that point, log fragmentation takes place and smaller fragments are detached from the log falling onto the bed of embers. Despite the increase in external surface area, char oxidation takes place at a moderate rate. This last stage of wood log conversion in a stove is the most challenging to model. Finally, preliminary recommendations are provided for reducing CO emissions in wood log stoves.


Scientific Journals | 2018

Experiments and modelling of NOx precursors release (NH3 and HCN) in fixed-bed biomass combustion conditions

Anca-Couce A, Sommersacher P, Evic N, Mehrabian R, Scharler R. Experiments and modelling of NOx precursors release (NH3 and HCN) in fixed-bed biomass combustion conditions. Fuel. 2018, 222: 529-537.

External Link

Details

There is a need to reduce NOx emissions, which can only be achieved through a detailed understanding of the mechanisms for their formation and reduction. In this work the release of the NOx precursors, NH3 and HCN, for different fuels is experimentally analysed and modelled in typical fixed-bed combustion conditions. It is shown that NH3 and HCN are released during the main devolatilization phase and the NH3/HCN ratio increases for fuels with a higher nitrogen content. A simplified two-steps model for their release is presented. The model can predict with a reasonable accuracy the release for fuels with a low nitrogen content, however deviations are present for fuels with a high nitrogen content, which probably arise due to a reduction of NH3 and HCN taking place already in the bed.


Peer Reviewed Scientific Journals | 2017

Online experiments and modelling with a detailed reaction scheme of single particle biomass pyrolysis.

Anca-Couce A, Sommersacher P, Scharler R. Online experiments and modelling with a detailed reaction scheme of single particle biomass pyrolysis. Journal of Analytical and Applied Pyrolysis. Available online 17 July 2017

External Link

Details

Detailed reaction schemes and experimental data for the online release of pyrolysis volatiles are required to gain a more fundamental understanding of biomass pyrolysis, which would in turn allow the process to be controlled in a more precise way and the development of more targeted applications. A detailed online characterisation of pyrolysis products has been conducted in single particle experiments with spruce pellets at different temperatures, obtaining a good closure of the elemental mass balances. The yields and online release of CO, CO2, H2O, CH4, other light hydrocarbons and total organic condensable species, as well as char yield and composition, can be predicted with a reasonable accuracy with the application of a single particle model, coupled with a detailed pyrolysis scheme, and a simple one-step scheme for tar cracking. In order to achieve it, improvements have been conducted in the pyrolysis scheme, mainly concerning the release of light hydrocarbons and char yield and composition. Deviations are still present in the different groups in which organic condensable species can be classified.


Conference Papers | 2017

A Theoretical and Experimental Study of the Formation of Aromatic Hydrocarbons (BTX/PAH) as Soot Precursors from Biomass Pyrolysis Products

Mehrabian R, Shiehnejadhesar A, Bahramian H, Anca-Couce A, Sommersacher P, Hochenauer C, Scharler R. A Theoretical and Experimental Study of the Formation of Aromatic Hydrocarbons (BTX/PAH) as Soot Precursors from Biomass Pyrolysis Products. 25th European Biomass Conference & Exhibition (oral presentation). May 2017, Stockholm, Sweden.

External Link

Details

In this work a novel reaction mechanism for gas phase reactions has been developed to predict the formation of aromatic compounds from the pyrolysis products of woody biomass particles. The aromatic compounds are important for being main soot precursors as well as their toxic properties. The developed gas phase mechanism is validated with experimental data from literature as well as experimental data performed with a single particle reactor for three different pyrolysis temperatures, namely 550, 800 and 1000°C. A good agreement is achieved between model results and experimental data for the total yield of each main family of aromatic hydrocarbons, i.e. phenolics, BTXs and PAHs.


Peer Reviewed Scientific Journals | 2017

CO/CO2 Ratio in biomass char oxidation

Anca-Couce A, Sommersacher P, Shiehnejadhesar A, Mehrabian R, Hochenauer C, Scharler R. CO/CO2 Ratio in biomass char oxidation. INFUB 2017, 11th European Conference on Industrial Furnace and Boilers. 18-21 April 2017, Albufeira, Portugal.

External Link

Details

The CO/CO2 release ratio obtained during char combustion of single biomass particles has been analysed in this work experimentally and by modelling. Experiments have been conducted with spruce, straw and Miscanthus pellets at different temperatures. Furthermore, these experiments have been modelled with a single particle model coupled with a CFD model of the single particle reactor. The results show that the CO/CO2 ratio strongly depends on the feedstock, being lower for spruce than for straw or Miscanthus. Furthermore, the most commonly employed correlations for this ratio in literature are not adequate, as they either under- or over-predict it.


Conference Papers | 2017

Innovative flexible grate solutions for future biomass combustion appliances

Feldmeier, S., Wopienka, E., Schwarz, M., Mehrabian Bardar, R.: Innovative flexible grate solutions for future biomass combustion appliances. (European Biomass Conference and Exhibition 2017, Stockholm).

External Link

Details

The energetic utilization of alternative fuels (short rotation coppice, miscanthus), agricultural by-products (straw, corn cobs) or biomass residues (nut shells, coffee grounds) becomes of increasing interest. Due to variations in fuel properties – and the ash content in particular – biomass fuels considerably influence the conditions in the combustion zone and especially in the fuel bed. Usually, state-of-the-art combustion appliances are optimized for a particular fuel quality and typically approved only for utilization of standardized wood pellets or wood chips. Research activities within the GrateAdvance project focus on fuel flexible grate technologies being capable of adapting conditions in the combustion zone by a systematic and targeted adjustment of grate parameters in order to minimize emissions and slagging problems, thus setting the basis for a new generation of biomass technologies. Moreover, a novel control concept will ensure optimal combustion conditions for any biomass fuel, and specifically adjust to relevant fuel properties.


Peer Reviewed Scientific Journals | 2017

Modelling heat of reaction in biomass pyrolysis with detailed reaction schemes

Anca-Couce A, Scharler R. Modelling heat of reaction in biomass pyrolysis with detailed reaction schemes. Fuel. 15 October 2017;206: 572-579.

External Link

Details

Primary devolatilization and the exothermic heterogeneous secondary charring of the primary volatiles need to be described in a consistent manner in order to correctly predict the heat of reaction of biomass pyrolysis. Detailed reaction schemes can currently predict mass loss and product composition of biomass pyrolysis with good accuracy, but have a weakness in the description of the heat of reaction. In this work it is shown for the first time that including secondary charring reactions a detailed reaction scheme can predict the evolution of the heat of pyrolysis for different conditions. The enthalpy of reaction is calculated for each reaction as the difference between the net calorific value of reactants and products. The presented model is able to describe the heat evolution in micro-TGA-DSC experiments conducted without a lid, where pyrolysis is endothermic, and with a lid, where secondary reactions are enhanced and the global heat of reaction shifts to exothermic. Furthermore, when it is coupled to a particle model, it correctly describes single particle pyrolysis experiments conducted with beech spheres where there is a remarkably exothermic peak in the centre temperature.


Peer Reviewed Scientific Journals | 2016

Dominating high temperature corrosion mechanism in low alloy steels in wood chips fired boilers

Gruber T, Retschitzegger S, Scharler R, Obernberger I. Dominating high temperature corrosion mechanism in low alloy steels in wood chips fired boilers. Energy and Fuels. 17 March 2016;30(3): 2385-2394.

External Link

Details

Ash related problems such as slagging, fouling, and high temperature corrosion in biomass fired boilers are still insufficiently explored due to the complexity of the underlying processes. High temperature corrosion of low alloy steels like 13CrMo4-5 has already been investigated in plants firing chemically untreated wood chips. In this earlier work it has been suggested that the oxidation of the steel is the dominating mechanism in the material temperature range between 450 and 550 °C. Unfortunately the exponential dependence of the material degradation on the flue gas temperature also found within this work cannot be explained with the proposed corrosion mechanism. To determine the dominating corrosion mechanism, additionally test runs have been carried out in a specially designed drop tube reactor. To investigate the time-dependent corrosion behavior of 13CrMo4-5, a newly developed mass loss probe was applied under several constant parameter setups. In addition to these measurements, the time-dependent oxidation of 13CrMo4-5 under air was investigated in a muffle furnace. To gain relevant information regarding the corrosion mechanism prevailing, the deposits as well as the corrosion products have been examined subsequently to the test runs by means of scanning electron microscopy and energy dispersive X-ray analyses. With the experimental data gained it could be shown that the dominating corrosion mechanism strongly depends on the conditions prevailing (e.g., steel temperature, flue gas temperature, and velocity) and can either be the oxidation of the steel by gaseous O2 and H2O or a combination of oxidation and active Cl-induced oxidation.


Peer Reviewed Scientific Journals | 2016

Reaction mechanisms and multi-scale modelling of lignocellulosic biomass pyrolysis

Anca-Couce, A. Reaction mechanisms and multi-scale modelling of lignocellulosic biomass pyrolysis. Progress in Energy and Combustion Science. Volume 53, March 2016, Pages 41–79.

External Link

Details

In this work about pyrolysis of lignocellulosic biomass, the individual reaction mechanisms of cellulose, hemicellulose and lignin are initially described. The recent advances in the understanding of the fundamental reaction pathways are described, including quantum-mechanical calculations, and the description of pyrolysis as a two-step process, i.e., primary pyrolysis and secondary charring, the effect of the presence of an intermediate liquid compound, and the influence of inorganic species are discussed.

The need to describe biomass pyrolysis as the sum of the contributions of its individual components is then emphasised. The process of determining biomass mass loss kinetics is analysed, and the product composition and heat of reaction that are experimentally obtained during pyrolysis are presented, along with detailed schemes that can be used to predict them.

Finally, it is demonstrated that a multi-scale consideration of pyrolysis on multiple levels – specifically, on molecular, particle and reaction levels – is required to accurately describe biomass pyrolysis. Intra-particle phenomena and particle models are discussed and the reactor level is analysed with a focus placed on fixed bed and fluidised bed pyrolysis. In summary, a list of 10 research focal points that will be important in the future is presented.


Peer Reviewed Scientific Journals | 2016

The Virtual Biomass Grate Furnace - An Overall CFD Model for Biomass Combustion Plants

Ali Shiehnejadhesar, Ramin Mehrabian, Robert Scharler, Christoph Hochenauer. The Virtual Biomass Grate Furnace - An Overall CFD Model for Biomass Combustion Plants. 24rd European Biomass Conference & Exhibition (poster).

External Link

Details

This paper presents the virtual biomass grate furnace, which comprises of comprehensive CFD models of all relevant processes for the simulation of biomass grate furnaces. The models consist of a 3D packed bed model, a gas phase combustion model for laminar to highly turbulent flows and a model to account for the influence of the flue gas streaks arising from the fuel bed in the freeboard. The simulation results of a 20 kW underfeed stoker furnace show that the overall CFD model is able to provide valuable insight on the processes occurring in the packed bed and freeboard and their interactions.


Peer Reviewed Scientific Journals | 2015

Application of an empirical model in CFD simulations to predict the local high temperature corrosion potential in biomass fired boilers.

Gruber T, Scharler R, Obernberger I. Application of an empirical model in CFD simulations to predict the local high temperature corrosion potential in biomass fired boilers. Biomass and Bioenergy. Volume 79, August 2015, Pages 145-154.

External Link

Details

To gain reliable data for the development of an empirical model for the prediction of the local high temperature corrosion potential in biomass fired boilers, online corrosion probe measurements have been carried out. The measurements have been performed in a specially designed fixed bed/drop tube reactor in order to simulate a superheater boiler tube under well-controlled conditions. The investigated boiler steel 13CrMo4-5 is commonly used as steel for superheater tube bundles in biomass fired boilers. Within the test runs the flue gas temperature at the corrosion probe has been varied between 625 °C and 880 °C, while the steel temperature has been varied between 450 °C and 550 °C to simulate typical current and future live steam temperatures of biomass fired steam boilers. To investigate the dependence on the flue gas velocity, variations from 2 m·s−1 to 8 m·s−1 have been considered. The empirical model developed fits the measured data sufficiently well. Therefore, the model has been applied within a Computational Fluid Dynamics (CFD) simulation of flue gas flow and heat transfer to estimate the local corrosion potential of a wood chips fired 38 MW steam boiler. Additionally to the actual state analysis two further simulations have been carried out to investigate the influence of enhanced steam temperatures and a change of the flow direction of the final superheater tube bundle from parallel to counter-flow on the local corrosion potential.


Conference contributions | 2015

Application of numerical modelling to biomass grate furnaces

Mehrabian R, Shiehnejadhesar A., Scharler R. Application of numerical modelling to biomass grate furnaces. Internation conference on advances in mechanical engineering, Istanbul 2015.

External Link

Details

The direct combustion of the biomass is the most advanced and mature technology in the field of energetic biomass utilisation. The legislations on the amount of emitted pollutants and the plant efficiency of biomass combustion systems are continually being restricted. Therefore constant improvement of the plant efficiency and emission reduction is required Numerical modelling is gaining increasing importance for the development of biomass combustion technologies. In this paper an overview about the numerical modelling efforts deal with the most relevant phenomena in biomass grate firing systems is given. The numerical modelling results in a deeper understanding of the underlying processes in biomass combustion plants. Therefore, it leads to a faster and safer procedure of development of a new technology.


Peer Reviewed Scientific Journals | 2015

Development and validation of CFD models for gas phase reactions in biomass grate furnaces considering gas streak formation above the packed bed

Shiehnejadhesar A, Mehrabian R, Scharler R, Obernberger I. Development and validation of CFD models for gas phase reactions in biomass grate furnaces considering gas streak formation above the packed bed. Fuel Processing Technology. Volume 139, November 2015, Pages 142–158.

External Link

Details

State-of-the-art packed bed models supply continuous concentration profiles as boundary conditions for subsequent CFD simulations of gas phase, leading to pre-mixed combustion conditions. However, in reality the “porous” nature of the packed bed leads to streak formation influencing gas mixing and combustion. Therefore, in the present work, in order to account for the influence of the streaks on gas phase combustion, a gas streak model based on a correlation between the local gas residence time and a mixing time has been developed based on numerical simulations. Finally, the streak model was linked with an in-housed developed hybrid gas phase combustion model suitable for laminar to highly turbulent flow conditions and applied for an under-feed pellet stoker furnace (20 kWth) concerning the simulation of gas phase combustion and NOx formation. The results in comparison with a simulation without the streak formation model show that the flue gas species prediction can be improved with the proposed streak formation model. Especially, in the region above the fuel bed (in the primary combustion chamber), this is of special importance for NOx reduction by primary measures.


Conference Papers | 2015

Numerical modelling of biomass grate furnaces with a particle based model

Mehrabian R, Shiehnejadhesar A, Scharler R, Obernberger I. Numerical modelling of biomass grate furnaces with a particle based model, INFUB 10th European Conference on Industrial Furnace and Boilers 2015, 7th-10th of April 2015, Porto, Portugal.

Details


Reviewed Conference Papers | 2014

Multi-physics modelling of packed bed biomass combustion

Mehrabian R, Shiehnejadhesar A, Scharler R, Obernberger I. Multi-physics modelling of packed bed biomass combustion. Fuel. 2014;122:164-78.

External Link

Details

A transient 3D model for two main zones, namely the fuel bed and the freeboard, of biomass packed bed combustion systems was developed. It integrates the models for the biomass conversion sub-processes and solves the governing equations for the gas and solid phase and their interactions. The intra-particle gradients are included by considering the biomass particles as thermally thick particles. The shrinkage of the packed bed and the variations of the bed porosity due to the uneven consumption of the fuel are taken into account. Detailed kinetic mechanisms are used for the simulation of homogeneous gas phase reactions. To verify the model and to increase the understanding of packed bed combustion, laboratory-scale fixed-bed batch experiments have been performed in a reactor with 9.5 cm diameter and 10 cm length. The model performance was extensively validated with gas phase measurements (CO, CO2, CH4, H2, H2O and O2) above the fuel bed, temperatures at different heights in the bed and in the freeboard, and the propagation rate of reaction front. The simulation results are in a good agreement with the measured values. © 2014 Elsevier Ltd. All rights reserved.


Reviewed Conference Papers | 2012

A CFD model for thermal conversion of thermally thick biomass particles

Mehrabian R, Zahirovic S, Scharler R, Obernberger I, Kleditzsch S, Wirtz S, et al. A CFD model for thermal conversion of thermally thick biomass particles. Fuel Process Technol. 2012;95:96-108.

External Link

Details

A one-dimensional model for the thermal conversion of thermally thick biomass particles is developed for the simulation of the fuel bed of biomass grate furnaces. The model can be applied for cylindrical and spherical particles. The particle is divided into four layers corresponding to the main stages of biomass thermal conversion. The energy and mass conservation equations are solved for each layer. The reactions are assigned to the boundaries. The model can predict the intra-particle temperature gradient, the particle mass loss rate as well as the time-dependent variations of particle size and density, as the most essential features of particle thermal conversion. When simulating the fuel bed of a biomass grate furnace, the particle model has to be numerically efficient. By reducing the number of variables and considering the lowest possible number of grid points inside the particle, a reasonable calculation time of less than 1 min for each particle is achieved. Comparisons between the results predicted by the model and by the measurements have been performed for different particle sizes, shapes and moisture contents during the pyrolysis and combustion in a single-particle reactor. The results of the model are in good agreement with experimental data which implies that the simplifications do not impair the model accuracy.


Peer Reviewed Scientific Journals | 2012

Effects of pyrolysis conditions on the heating rate in biomass particles and applicability of TGA kinetic parameters in particle thermal conversion modelling.

Mehrabian R, Scharler R, Obernberger I. Effects of pyrolysis conditions on the heating rate in biomass particles and applicability of TGA kinetic parameters in particle thermal conversion modelling. Fuel. 2012;93:567-75.

External Link

Details

A one-dimensional single particle model is utilised to investigate the effects of radiation temperature, moisture content, particle size and biomass physical properties on the heating rate in biomass particles during pyrolysis. The model divides the particle into four layers - drying, pyrolysis, char and ash layer - corresponding to the four main stages of biomass thermal conversion. The average of the time derivative of the pyrolysis layer centre temperature weighted by the pyrolysis rate is introduced as an appropriate indicator for the heating rate in the particle during pyrolysis. The influencing parameters on the heating rate are summarised in the Biot number and the thermal time constant, to make the investigation of their effects easier. The heating rate is inversely proportional to the thermal time constant. The effect of a variation of the Biot number on the heating rate is negligible in comparison to the thermal time constant. Therefore, the thermal time constant can be sufficiently used to specify the heating rate regimes during pyrolysis. It is found that for thermal time constants of more than 50 s, pyrolysis takes place in a low heating rate regime, i.e. less than 50 K/min. Additionally, the heating rate during pyrolysis of various biomass types under a wide range of thermal conversion conditions has been examined, in order to classify the heating rate regime of pyrolysis in state-of-the-are combustion/gasification plants. The pyrolysis of wood dust and wood pellets is found to happen always in high heating rate regimes. Therefore, the kinetic parameters obtained by conventional TGA systems (typically with heating rates lower than 50 K/min) are not applicable for them. On the contrary, the pyrolysis of wood logs always happens in low heating rate regimes, which indicates that kinetic parameters obtained by conventional TGA systems can be applied. However, pyrolysis of wood chips can undergo low or high heating rate regimes depending on their particle size. Concerning the moisture content, it can be stated that it does not strongly influence the heating rate regime of certain biomass particles. © 2011 Elsevier Ltd. All rights reserved.