Sort Title Year

Publications


Peer Reviewed Scientific Journals | 2021

Analysis of H2S-related short-term degradation and regeneration of anode- and electrolyte supported solid oxide fuel cells fueled with biomass steam gasifier product gas

Pongratz G, Subotić V, Schroettner H, Hochenauer C, Skrzypkiewicz M, Kupecki J, Anca-Couce A, Scharler R. Analysis of H2S-related short-term degradation and regeneration of anode- and electrolyte supported solid oxide fuel cells fueled with biomass steam gasifier product gas. Energy.2021.218:119556.

External Link

Details

Using solid oxide fuel cells in biomass gasification based combined heat and power production is a promising option to increase electrical efficiency of the system. For an economically viable design of gas cleaning units, fuel cell modules and further development of suitable degradation detection methods, information about the behavior of commercially available cell designs during short-term poisoning with H2S can be crucial. This work presents short-term degradation and regeneration analyses of industrial-relevant cell designs with different anode structure and sulfur tolerance fueled with synthetic product gas from wood steam gasification containing 1 to 10 ppmv of H2S at 750°C and 800°C. Full performance regeneration of both cell types was achieved in all operating points. The high H2O content and avoided fuel depletion may have contributed to a lower performance degradation and better regeneration of the cells. A strong influence of the catalytically active anode volume on poisoning and regeneration behavior was quantified, thereby outlining the importance of considering the anode structure besides the sulfur tolerance of the anode material. Hence, cells with less sulfur tolerant anode material but larger anode volume might outperform cells less sensitive to sulfur in the case of an early detection of a gas cleaning malfunction.


Peer Reviewed Scientific Journals | 2021

Ash transformation during single-pellet gasification of agricultural biomass with focus on potassium and phosphorus

Hedayati A, Sefidari H, Boman C, Skoglund N, Kienzl N, Öhman M. Ash transformation during single-pellet gasification of agricultural biomass with focus on potassium and phosphorus. Fuel Processing Technology. 15 June 2021.217:106805

External Link

Details

Agricultural biomasses and residues can play an important role in the global bioenergy system but their potential is limited by the risk of several ash-related problems such as deposit formation, slagging, and particle emissions during their thermal conversion. Therefore, a thorough understanding of the ash transformation reactions is required for this type of fuels. The present work investigates ash transformation reactions and the release of critical ash-forming elements with a special focus on K and P during the single-pellet gasification of different types of agricultural biomass fuels, namely, poplar, grass, and wheat grain residues. Each fuel was gasified as a single pellet at three different temperatures (600, 800, and 950 °C) in a Macro-TGA reactor. The residues from different stages of fuel conversion were collected to study the gradual ash transformation. Characterization of the residual char and ash was performed employing SEM-EDS, XRD, and ICP with the support of thermodynamic equilibrium calculations (TECs). The results showed that the K and P present in the fuels were primarily found in the residual char and ash in all cases for all studied fuels. While the main part of the K release occurred during the char conversion stage, the main part of the P release occurred during the devolatilization stage. The highest releases – less than 18% of P and 35% of K – were observed at the highest studied temperature for all fuels. These elements were present in the residual ashes as K2Ca(CO3)2 and Ca5(PO4)3OH for poplar; K-Ca-rich silicates and phosphosilicates in mainly amorphous ash for grass; and an amorphous phase rich in K-Mg-phosphates for wheat grain residues.


Peer Reviewed Scientific Journals | 2021

Categorization of small-scale biomass combustion appliances by characteristic numbers

Feldmeier S, Schwarz M, Wopienka E, Pfeifer C. Categorization of small-scale biomass combustion appliances by characteristic numbers. Renewable Energy. 2021.163:2128-2136.

External Link

Details

The market offers a broad range of different combustion appliances dedicated to residential heating with biomass. The effect of fuel properties on the formation of slag and emissions varies and the technology influences the impact to a certain extent. The applicability of biomass fuels is not only determined by operational settings but also by the design of boiler components as grate area and combustion chamber. Aspects as the fuel load on the grate, residence time, geometry of grate and combustion chamber design, as well as feeding and de-ashing influence the extent of slag formation and emission release. The determination of characteristic numbers by means of constructional measures allows a systematic comparison and - in a further step - an assessment/categorization of combustion technologies. After conducting a boiler survey relevant parameters regarding grate, combustion chamber, feeding, and ash removal were gathered. Characteristic numbers were specified in order to compare technological aspects. The results of this study allow the investigation of the influence of the combustion technology on the performance. They will assist the systematic and targeted design of small-scale boilers and the optimization of combustion appliances in future, especially when it comes to fuel-flexibility.


Peer Reviewed Scientific Journals | 2021

Combustion of poultry litter and mixture of poultry litter with woodchips in a fixed bed lab-scale batch reactor

Katsaros G, Sommersacher P, Retschitzegger S, Kienzl N, Tassou SA, Pandey DS. Combustion of poultry litter and mixture of poultry litter with woodchips in a fixed bed lab-scale batch reactor. Fuel. 2021.286.119310.

External Link

Details

Experiments have been conducted in a batch fixed bed lab-scale reactor to investigate the combustion behaviour of three different biomass fuels, poultry litter (PL), blend of PL with wood chips (PL/WC) and softwood pellets (SP). Analysis of the data gathered after completion of the test runs, provided useful insights about the thermal decomposition behaviour of the fuels, the formation of N gaseous species, the release of ash forming elements and the estimation of aerosol emissions. It was observed that the N gaseous species are mainly produced during the devolatilisation phase. Hydrogen cyanide (HCN) was the predominant compound in the case of SP combustion, whereas ammonia (NH3) displayed the highest concentration during the combustion of PL and blend (PL/WC). With reference to ash forming elements, the release rates of potassium (K) and sodium (Na) range between 15–50% and 20–37% respectively, whereas the release rate of sulphur (S) falls between 54–92%. Chlorine (Cl) presents very high release rate for all tested fuels acquiring values greater than 85%, showing the volatile nature of the specific compound. The maximum potential of aerosol emissions was estimated based on the calculation of ash forming elements. In particular, during PL combustion the maximum aerosol emissions were observed, 2806 mg/Nm3 (dry flue gas, 13 vol% O2), mainly influenced by the release rate of K in the gas phase. Fuel indexes for the pre-evaluation of combustion related challenges such as NOx emissions, potential for aerosols formation, corrosion risk, and ash melting behaviour have also been investigated.


Peer Reviewed Scientific Journals | 2021

Combustion of poultry litter and mixture of poultry litter with woodchips in a fixed bed lab-scale batch reactor

Katsaros G, Sommersacher P, Retschitzegger S, Kienzl N, Tassou SA, Pandey DS. Combustion of poultry litter and mixture of poultry litter with woodchips in a fixed bed lab-scale batch reactor. Fuel. 2021.286.119310.

External Link

Details

Experiments have been conducted in a batch fixed bed lab-scale reactor to investigate the combustion behaviour of three different biomass fuels, poultry litter (PL), blend of PL with wood chips (PL/WC) and softwood pellets (SP). Analysis of the data gathered after completion of the test runs, provided useful insights about the thermal decomposition behaviour of the fuels, the formation of N gaseous species, the release of ash forming elements and the estimation of aerosol emissions. It was observed that the N gaseous species are mainly produced during the devolatilisation phase. Hydrogen cyanide (HCN) was the predominant compound in the case of SP combustion, whereas ammonia (NH3) displayed the highest concentration during the combustion of PL and blend (PL/WC). With reference to ash forming elements, the release rates of potassium (K) and sodium (Na) range between 15–50% and 20–37% respectively, whereas the release rate of sulphur (S) falls between 54–92%. Chlorine (Cl) presents very high release rate for all tested fuels acquiring values greater than 85%, showing the volatile nature of the specific compound. The maximum potential of aerosol emissions was estimated based on the calculation of ash forming elements. In particular, during PL combustion the maximum aerosol emissions were observed, 2806 mg/Nm3 (dry flue gas, 13 vol% O2), mainly influenced by the release rate of K in the gas phase. Fuel indexes for the pre-evaluation of combustion related challenges such as NOx emissions, potential for aerosols formation, corrosion risk, and ash melting behaviour have also been investigated.


Peer Reviewed Scientific Journals | 2021

Correlations between tar content and permanent gases as well as reactor temperature in a lab-scale fluidized bed biomass gasifier applying different feedstock and operating conditions

von Berg L, Pongratz G, Pilatov A, Almuina-Villar H, Scharler R, Anca-Couce A. Correlations between tar content and permanent gases as well as reactor temperature in a lab-scale fluidized bed biomass gasifier applying different feedstock and operating conditions.Fuel.2021.305:121531

External Link

Details

The major problem of fluidized bed biomass gasification is the high tar contamination of the producer gas which is associated with the complex and time-consuming sampling and analysis of these tars. Therefore, correlations to predict the tar content are a helpful tool for the development and operation of biomass gasifiers. Correlations between tars and gas composition as well as reactor temperature derived for a steam-blown lab-scale bubbling fluidized bed gasifier are investigated in this study to assess their applicability. A comprehensive data set containing over 80 experimental points was obtained for various operation conditions, including variations in temperature from 700 to 800 °C, feedstock, amount of steam for fluidization, as well as the addition of oxygen. Linear correlations between tar and permanent gases show good accuracy for H2 and CH4 when using pure steam. However, experiments conducted with steam-oxygen mixtures show high deviations for the CH4-based correlation and smaller but still significant deviations for the H2-based correlation. No relation between tar and CO or CO2 was found. The correlation between tar and temperature shows highest accuracy, including good agreement with the steam-oxygen experiments. All tar correlations showed useful results over a broad operating range. However, significant deviations can be obtained when considering just one gas compound. Therefore, a combination of different correlations considering gas components and temperature seems to be the best method of tar prediction. This leads to a powerful tool for fast online tar monitoring for a broad range of operating conditions, once a calibration measurement was conducted.


Peer Reviewed Scientific Journals | 2021

Detailed NOX precursor measurements within the reduction zone of a novel small-scale fuel flexible biomass combustion technology

Archan G, Scharler R, Pölzer L, Buchmayr M, Sommersacher P, Hochenauer C, Gruber J, Anca-Couce A. Detailed NOX precursor measurements within the reduction zone of a novel small-scale fuel flexible biomass combustion technology. Fuel. 15 October 2021.302:121073

External Link

Details

A novel biomass combustion technology with a compact fixed-bed operated with a low oxygen content and double air staging was investigated. Minimized flue gas emissions at high fuel flexibility were achieved only with primary measures. The fuel nitrogen conversion mechanisms were investigated in detail in the secondary zone of a 30 kW lab-reactor, designed as efficient reduction zone. Experimental investigations were carried out to determine the distribution of gas temperatures, main dry product gas components as well as NOX precursors such as NH3 and HCN along the height of the reduction zone. The objective was to determine and understand the various fuel nitrogen conversion mechanisms in the reduction zone that can minimize NOX emissions.

It was found that the HCN/NH3 ratio increases with the fuel nitrogen content. This corresponds to an unexpected opposite trend to typical biomass grate furnaces. It was concluded that it is crucial for the HCN/NH3 ratio whether the released nitrogen tars are already cracked in the fixed-bed or only in the gas phase, as in the novel technology. Furthermore, the influence of gas temperature, air ratio, mixing, recirculated flue gas and residence time on the formation and reduction of NH3, HCN and NO is discussed.

Finally, this novel technology achieves NOX emissions of<95 mg·m−3 and 175 mg·m−3 for woody and herbaceous fuels, respectively, which is well below the small-scale state-of-the-art for the respective N contents and it achieves fuel nitrogen conversions to NOX in flue gas of 35% and 25%, respectively.


Peer Reviewed Scientific Journals | 2021

Experimental evaluation of primary measures for NOX and dust emission reduction in a novel 200 kW multi-fuel biomass boiler

Archan G, Anca-Couce A, Buchmayr M, Hochenauer C, Gruber J, Scharler R. Experimental evaluation of primary measures for NOX and dust emission reduction in a novel 200 kW multi-fuel biomass boiler. June 2021.170:1186-1196. https://doi.org/10.1016/j.renene.2021.02.055

External Link

Details

The aim of this work is to utilize various biogenic fuels without ash slagging and to significantly reduce NOX and particulate matter emissions in comparison to modern combustion technologies. For this purpose, a novel small-scale multi-fuel biomass grate furnace technology was developed and experimentally investigated. It employs a low oxygen concentration in the fixed-bed and a double air staging, including the supply of flue gas recirculation. In this way slagging is prevented on the grate, reducing the release of ash-forming volatiles, NOX emissions are minimized in the reduction zone and an efficient flue gas burnout is achieved in the tertiary zone. Wood pellets and chips as well as miscanthus briquettes were investigated.

The measured total particle emissions showed a reduction of 68% for pellets and 70% for wood chips compared to typical small-scale furnaces. Furthermore, a reduction of NOX emissions of 39% for wood chips, 40% for wood pellets and 45% for miscanthus briquettes was achieved compared to typical small-scale furnaces. The experimental parameter study provided fundamental insights into the various mechanisms involved in this novel technology, which is close to market introduction, and proved its high fuel flexibility and great potential for particulate matter and NOX emission reduction.


Other publication | 2021

Gemeinsam richtig heizen - Video

External Link

Details


Peer Reviewed Scientific Journals | 2021

Real-life emissions from residential wood combustion in Austria: From TSP emissions to PAH emission profiles, diagnostic ratios and toxic risk assessment

B Kirchsteiger, F Kubik, R Sturmlechner, H Stressler, M Schwabl, M Kistler, A Kasper-Giebl. Real-life emissions from residential wood combustion in Austria: From TSP emissions to PAH emission profiles, diagnostic ratios and toxic risk assessment. Atmospheric Pollution Research. 2021.12:8.

External Link

Details

Residential wood combustion is, besides particulate emissions, also linked to emissions of organic compounds, comprising various toxic substances such as polycyclic aromatic hydrocarbons (PAHs). Although, literature data has shown that highest emissions occur during maloperations caused by the user itself, most studies focus on lab-testing not reflecting the situation in the field. This study evaluates the real-life situation in Austria, investigating emissions of total suspended particles (TSP) and particle-bound substances of four manually operated room heaters commonly installed in people's homes. Measurements were conducted within a field measurement campaign realized in the scope of the Clean Air by biomass project. To evaluate the impact of the users' habit two types of combustion experiments were performed, one representing the diversity of possible maloperations and one realized under optimized conditions following a strict optimization protocol. As special focus was laid on PAHs, sampling was realized using a dilution system adapted for the use in the field. Generally, optimization lead to a clear decrease of most compounds (i.e. TSP, OC, EC, PAHs), however, emissions of the anhydrosugar levoglucosan were not affected at all. Total PAH emissions could be clearly reduced, moreover, optimization lead to a shift towards low molecular weight PAHs and thus, less toxic ones, clearly reflected by lower toxicity equivalents. Correlation analysis using the Spearman's rank method showed significantly high correlations among the individual PAH congeners, and rather low ones with other target substances.


Technical Reports | 2021

Tailoring of the pore structures of wood pyrolysis chars for potential use in energy storage applications

Maziarka P, Sommersacher P, Wang X, Kienzl N, Retschitzegger S, Prins W, Hedin N, Ronsse F. Tailoring of the pore structures of wood pyrolysis chars for potential use in energy storage applications. Applied Energy.2021.286:116431. https://doi.org/10.1016/j.apenergy.2020.116431

External Link

Details

Char obtained from biomass pyrolysis is an eco-friendly porous carbon, which has potential use as a material for electrodes in supercapacitors. For that application, a high microporous specific surface area (SSA) is desired, as it relates to the accessible surface for an applied electrolyte. Currently, the incomplete understanding of the relation between porosity development and production parameters hinders the production of tailor-made, bio-based pyrochars for use as electrodes. Additionally, there is a problem with the low reliability in assessing textual properties for bio-based pyrochars by gas adsorption. To address the aforementioned problems, beech wood cylinders of two different lengths, with and without pre-treatment with citric acid were pyrolysed at temperatures of 300–900 °C and analysed by gas adsorption. The pyrolyzed chars were characterised with adsorption with N2 and CO2 to assess the influence of production parameters on the textual properties. The new approach in processing the gas adsorption data used in this study demonstrated the required consistency in assessing the micro- and mesoporosity. The SSA of the chars rose monotonically in the investigated range of pyrolysis temperatures. The pre-treatment with citric acid led to an enhanced SSA, and the length of the cylinders correlated with a reduced SSA. With pyrolysis at 900 °C, the micro-SSAs of samples with 10 mm increased by on average 717 ± 32 m2/g. The trends among the investigated parameters and the textual properties were rationalized and provide a sound basis for further studies of tailor-made bio-based pyrochars as electrode materials in supercapacitors.


Conference contributions | 2020

Advanced Test Methods for Pellet Stoves – A Technical Review

Reichert G, Schwabl M, Schmidl C. Advanced Test Methods for Pellet Stoves – A Technical Review. 6th Central European Biomass Conference (oral presentation) 2020.

External Link

Download PDF

Details

Third party testing of direct heating appliances fueled with pellets has been established in many countries worldwide. The main goals are ensuring operation safety and a minimum level of performance of the products prior to market implementation. This kind of approval procedure for new products requires testing standards, certified testing bodies and a legal framework defining minimum requirements for specified performance parameters which are assessed in the respective standards.

While the overall targets are quite similar for all countries having set-up such procedures, the practical implementation of these targets in the national/international testing standards is remarkably different. This applies to both, the way of operating the appliance during the testing and the measurements performed during the testing.

Furthermore several industries were requested recently to modify their product standards towards more realistic operating conditions. The most famous example is car industry, but this request may also apply to biomass heating systems.

 


Peer Reviewed Scientific Journals | 2020

Applicability of Torrefied Sunflower Husk Pellets in Small and Medium Scale Furnaces

Kienzl N, Margaritis N, Isemin R, Zaychenko V, Strasser C, Kourkoumpas DS, Grammelis P, Klimov D, Larina O, Sytchev G, Mikhalev A. Applicability of Torrefied Sunflower Husk Pellets in Small and Medium Scale. Waste and Biomass Valorization. 2020;275:122882.

External Link

Details

The aim of this paper is to test the applicability of upgraded agricultural biomass feedstock such as torrefied sunflower husks during combustion in small and medium heating applications. Sunflower husk is formed in large quantities at enterprises producing sunflower oil and can be used as biofuel. However, big problems arise due to the low bulk density of husks and the rapid growth of ash deposits on the heating surfaces of boilers. In order to solve these problems, it was proposed to produce pellets from husks, and to subject these pellets to torrefaction. After torrefaction, net calorific value was increased by 29% while the risk of high temperature corrosion of boilers was reduced. Signs of ash softening neither occurred in combustion of raw nor in combustion of torrefied sunflower husk pellets. High aerosol emissions, already present in raw sunflower husk pellets, could not be mitigated by torrefaction. First combustion results at medium scale furnaces indicated that sunflower husk pellets (both raw and torrefied) in a commercial boiler < 400 kW, operated in a mode with low primary zone temperatures (< 850 °C), meet current emission limits. Regarding the future upcoming emission limits according to the European Medium Combustion Plant Directive, additional measures are required in order to comply with the dust limits.


Conference contributions | 2020

Biochar’s reaction kinetics under gasification conditions by experimental tests with TGA

Lagler J, Martini S, Kienzl N, Loder A. Biochar’s reaction kinetics under gasification conditions by experimental tests with TGA. 6th Central European Biomass Conference (poster). 2020.

External Link

Download PDF

Details

During the last years biomass evolved into one of the most important energy sources in Central Europe. Depending on the atmosphere, different types of thermochemical processes can be differentiated: pyrolysis, gasification and combustion, whereas pyrolysis operates without any oxygen in the atmosphere, combustion with the highest ratio of oxygen. Depending on the conversion technology and conversion conditions, different products can be generated: heat, cooling power and electrical power, liquid, gaseous and solid products, such as hydrogen, FT-fuels and biochar.
This work focuses on the valorisation of solid side products of gasification based biomass CHP-systems to increase ecologic and economic benefit. Depending on the conversion process of biomass into producer gas this solid residue consists mainly of ash or of so called biochar with high carbon content. Increasing the amount of biochar leads to a decrease of producer gas, but, with the high market potential of biochar, the economic benefits increase. According to its characteristics (e.g. purity, surface structure) different applications can be addressed and therefore different prices can be achieved. Therefore, extended research on biochar treatment processes and related reaction kinetics of biochar is from crucial importance for the development and optimisation of downstream upgrading processes in order to reach the desired quality of the biochar. In the past, such considerations of utilising side products, like biochar, have not been in the centre of attention during the design phase of gasification reactors. Therefore, the establishment of a finishing-treatment of biochar extracted from a gasification process is under investigation. The focus of this paper lies on the reaction kinetics of biochar activation itself and not the primary material (biomass). In order to derivate correlations between reaction kinetics and atmosphere compositions as well as temperature, experimental test runs are conducted with a Thermogravimetric Analyser (TGA) including a steam furnace, which enables studies of mass and energy changes under defined absolute humidity. To produce applicable and reliable data, the limitations of the TGA-test-setup are evaluated with examinations on variations of sample mass, bulk density, particle size distribution and the gas flow. On this basis the test design is defined with certain specifications on the sample preparation and a constant flow velocity. The investigated biochar taken out the gasification process is dried, milled and sieved for the TGA-tests. The main part is devoted to conduct a detailed investigation changing the content of moisture (H2O) and carbon dioxide (CO2) as well as the temperature. The tests are operated at a temperature range between 700 and 1000°C, H2O-concentrations from 0 to 80 vol% and CO2-concentrations also in the range of 0 to 80 vol%. These systematic experimental variations provide the basis for a model of the reaction kinetics of biochar under different boundary conditions. The data is to be evaluated via the generic model including temperature and the partial pressures of CO2 and H2O. Afterwards it will be matched with conventional models (e.g. Arrhenius plot, linear regression models) to determine their suitability. One of those models was used in the paper of Ollero et al, where the influence of CO2 on the reaction kinetics of olive residue was investigated. 1First results show that the reaction rate of biochar is much lower than the one of olive residue. Effects of treatment conditions on the surface properties are investigated by taking out the treated samples after a defined treatment period at a defined mass loss and subsequent surface analysis (BET, pore size/volume distribution) of the samples. In first BET surface analysis, the treatments of biochar with vapour lead to a surface of approximately 1000m²/g whereas the original sample has a BET surface lower than 150m²/g. This finding leads to the question how the reaction kinetics of a treatment process influences the surface change. The obtained data is taken as basis for developing an upgrading process for biochar to a high value product of the gasification process. In order to prove the suitability of TGA-tests for identifying optimised treatment conditions, further research shall demonstrate the correlation of the lab-scale TGA-results with experiences of pilot scale tests.
 


Peer Reviewed Scientific Journals | 2020

Biomass pyrolysis TGA assessment with an international round robin

Anca-Couce A, Tsekos C, Retschitzegger S, Zimbardi F, Funke A, Banks S, Kraia T, Marques P, Scharler R, de Jong W, Kienzl N. Biomass pyrolysis TGA assessment with an international round robin.Fuel.2020;276:118002.https://doi.org/10.1016/j.fuel.2020.118002

External Link

Details

The large variations found in literature for the activation energy values of main biomass compounds (cellulose, hemicellulose and lignin) in pyrolysis TGA raise concerns regarding the reliability of both the experimental and the modelling side of the performed works. In this work, an international round robin has been conducted by 7 partners who performed TGA pyrolysis experiments of pure cellulose and beech wood at several heating rates. Deviations of around 20 – 30 kJ/mol were obtained in the activation energies of cellulose, hemicellulose and conversions up to 0.9 with beech wood when considering all experiments. The following method was employed to derive reliable kinetics: to first ensure that pure cellulose pyrolysis experiments from literature can be accurately reproduced, and then to conduct experiments at different heating rates and evaluate them with isoconversional methods to detect experiments that are outliers and to validate the reliability of the derived kinetics and employed reaction models with a fitting routine. The deviations in the activation energy values for the cases that followed this method, after disregarding other cases, were of 10 kJ/mol or lower, except for lignin and very high conversions. This method is therefore proposed in order to improve the consistency of data acquisition and kinetic analysis of TGA for biomass pyrolysis in literature, reducing the reported variability.


Conference contributions | 2020

CleanAir by biomass

Sturmlechner R, Stressler H, Golicza L, Reichert G, Schwabl M, Höftberger E, Kelz J. CleanAir by biomass. 6th Central European Biomass Conference, 2020, Graz.

External Link

Download PDF

Details


Peer-reviewed publications | 2020

Combined influence of inorganics and transport limitations on the pyrolytic behaviour of woody biomass

Almuina-Villar H, Sommersacher P, Retschitzegger S, Anca-Couce A, Dieguez-Alonso A. Combined influence of inorganics and transport limitations on the pyrolytic behaviour of woody biomass. Chemical Engineering Transactions. 2020.80:73-78

External Link

Details

A deeper understanding and quantification on the influence of inorganic species on the pyrolysis process, combined with the presence of heterogeneous secondary reactions, is pursued in this study. Both chemical controlled and transport limited regimes are considered. The former is achieved in a thermogravimetric analyser (TGA) with fine milled biomass in the mg range, while the latter is investigated in a particle level reactor with spherical particles of different sizes. To account for the influence of inorganics, wood particles were washed and doped with KCl aqueous solutions, resulting in K concentrations in the final wood of around 0.5% and 5% on dry basis. Gas species and condensable volatiles were measured online with Fourier transform infrared (FTIR) spectroscopy and a non-dispersive infrared (NDIR) gas analyzer. The removal of inorganic species delayed the pyrolysis reaction to higher temperatures and lowered char yields. The addition of inorganics (K) shifted the devolatilization process to lower temperatures, increased char and water yields, and reduced CO production among others. Higher heating rates and temperatures resulted in lower char, water, and light condensable yields, but significantly higher CH4 and other light hydrocarbons, as well as CO. The increase in these yields can be attributed, at least in part, to the gas phase cracking reactions of the produced volatiles. Larger particle size increased the formation of char, CH4 and other light hydrocarbons, and light condensables for low and high pyrolysis temperatures, while reduced the release of CO2 and H2O. This novel data set allows to quantify the influence of each parameter and can be used as basis for the development of detailed pyrolysis models which can include both the influence of inorganics and transport limitations when coupled into particle models.


Peer Reviewed Scientific Journals | 2020

Consequential Life Cycle Assessment of energy generation from waste wood and forest residues: The effect of resource-efficient additives

Corona B, Shen L, Sommersacher P, Junginger M. Consequential Life Cycle Assessment of energy generation from waste wood and forest residues: The effect of resource-efficient additives. Journal of Cleaner Production 2020. 259:120948.

External Link

Details

Combustion of waste wood can cause slagging, fouling and corrosion which lead to boiler failure, affecting the energy efficiency and the lifetime of the power plant. Additivation with mineral and sulfur containing additives during waste wood combustion could potentially reduce these problems. This study aims at understanding the environmental impacts of using additives to improve the operational performance of waste wood combustion. The environmental profiles of four energy plants (producing heat and/or power), located in different European countries (Poland, Austria, Sweden and Germany), were investigated through a consequential life cycle assessment (LCA). The four energy plants are all fueled by waste wood and/or residues. This analysis explored the influences of applying different additives strategies in the four power plants, different wood fuel mixes and resulting direct emissions, to the total life cycle environmental impacts of heat and power generated. The impacts on climate change, acidification, particulate matter, freshwater eutrophication, human toxicity and cumulative energy demand were calculated, considering 1 GJ of exergy as functional unit. Primary data for the operation without additives were collected from the power plant operators, and emission data for the additives scenarios were collected from onsite measurements. A sensitivity analysis was conducted on the expected increase of energy efficiency. The analysis indicated that the use of gypsum waste, halloysite and coal fly ash decreases the environmental impacts of heat and electricity produced (average of 12% decrease in all impacts studied, and a maximum decrease of 121%). The decrease of impacts is mainly a consequence of the increase of energy generation that avoids the use of more polluting marginal technologies. However, impacts on acidification may increase (up to 120% increase) under the absence of appropriate flue gas cleaning systems. Halloysite was the additive presenting the highest benefits.


Conference contributions | 2020

Customizing biomass as reducing agent in blast furnace steelmaking – Reduction potential and fluidization

Deutsch R, Strasser C, Martini S, Kienzl N. Customizing biomass as reducing agent in blast furnace steelmaking – Reduction potential and fluidization. 28th European Biomass Conference and Exhibition (oral presentation) 2020.

Details

The reduction of greenhouse gas emissions is an important issue for iron and steel industry. One possibility is to use biomass-based reducing agents, also called bioreducers, to replace at least partly the fossil reducer agents. In a first step woody biomass was treated in a lab-scale muffle furnace and afterwards ground with a ball mill. The powder characteristics were investigated in respect to the flow behavior. For a certain treatment temperature the particle size distribution and as well the flow behavior shows similarities to lignite. The next stage was to identify relations between powder characteristics and its fluidization behavior. A fluidization device was assembled and used to determine the minimum fluidization gas velocity for various bioreducer powders.


Conference contributions | 2020

Das neue Holzwärmeszenario "Holz ersetzt Heizöl"

Schmidl C, Reichert G. Das neue Holzwärmeszenario "Holz ersetzt Heizöl". World Sustainable Energy Days 2020, Wels, Austria (oral presentation). 2020.

Details


Peer Reviewed Scientific Journals | 2020

Detailed experimental investigation of the spatially distributed gas release and bed temperatures in fixed-bed biomass combustion with low oxygen concentration

Archan G, Anca-Couce A, Gregorc J, Buchmayr M, Hochenauer C, Gruber J, Scharler R. Detailed experimental investigation of the spatially distributed gas release and bed temperatures in fixed-bed biomass combustion with low oxygen concentration. Biomass and Bioenergy. 2020;141:105725

External Link

Details

This publication focuses on the experimental investigation of a novel small-scale fuel flexible biomass combustion technology with a fixed-bed employing a low oxygen concentration. It was obtained through a low primary air ratio and the additional supply of recirculated flue gas. The plant was operated with spruce wood chips, which contained three different mass fractions of water, and miscanthus pellets. All relevant components of the released gas above the fixed-bed were measured, as well as the 3D bed temperature distribution. The balances confirmed a high experimental data consistency. Therefore, it was possible to determine the location of the four different conversion zones inside the fixed-bed: drying, pyrolysis, char gasification and char oxidation. The reduction of CO2 to CO in the char reduction zone worked efficiently across the entire grate area. Furthermore, the results showed that the water mass fraction of the fuel did not influence the dry product gas composition, but significantly affected the location for the release of pyrolysis products such as tars. It was found that the low oxygen concentration in the fixed-bed combined with flue gas recirculation was an effective method to reduce bed temperatures and therefore its inorganic emissions while significantly increasing feedstock flexibility. The investigations provided fundamental findings on the conversion and release behavior of the new technology under real operating conditions and are very useful for further experimental work and CFD simulations targeting the reduction of PM and NOX emissions.


Conference contributions | 2020

Evaluation of gas cleaning processes for the coupling of biomass gasification with Solid Oxide Fuel Cells (SOFC)

Martini S, Lagler J, Kienzl N, Tsiotsias T, Rettschitzegger S. Evaluation of gas cleaning processes for the coupling of biomass gasification with Solid Oxide Fuel Cells (SOFC). 6th Central European Biomass Conference (oral presentation). 2020.

External Link

Details


Peer Reviewed Scientific Journals | 2020

Evaluation of heat transfer models at various fluidization velocities for biomass pyrolysis conducted in a bubbling fluidized bed

von Berg L, Soria-Verdugo A, Hochenauer C, Scharler R, Anca-Couce A. Evaluation of heat transfer models at various fluidization velocities for biomass pyrolysis conducted in a bubbling fluidized bed. International Journal of Heat and Mass Transfer. 2020;160:120175

External Link

Details

Four different models for heat transfer to the particles immersed in a fluidized bed were evaluated and implemented into an existing single particle model. Pyrolysis experiments have been conducted using a fluidized bed installed on a balance at different temperatures and fluidization velocities using softwood pellets. Using a heat transfer model applicable for fluidized beds, the single particle model was able to predict the experimental results of mass loss obtained in this study as well as experimental data from literature with a reasonable accuracy. A good agreement between experimental and modeling results was found for different reactor temperatures and configurations as well as different biomass types, particle sizes – in the typical range of pellets - and fluidization velocities when they were higher than . However, significant deviations were found for fluidization velocities close to minimum fluidization. Heat transfer models which consider the influence of fluidization velocity show a better agreement in this case although differences are still present.


Conference contributions | 2020

GrateAdvance – Advanced adjustable grate solutions for future fuel flexible biomass combustion technologies

Barroso G, Essl M, Feldmeier S, Mehrabian R, Nussbaumer T, Öhman M, Reiterer T, Schwarz M, Shiehnejad-Hesar A, Wopienka E. GrateAdvance – Advanced adjustable grate solutions for future fuel flexible biomass combustion technologies. 6th Central European Biomass Conference - IEA-Workshop: TASK 32 (oral presentation). 2020.

Details


Conference contributions | 2020

Individiual heat management in the living room

Schwabl M. Individiual heat management in the living room. 6th Central European Biomass Conference (oral presentation. 2020.

Download PDF

Details