Publication | Peer reviewed papers | Modellierung und Simulation

Extension of the layer particle model for volumetric conversion reactions during char gasification

Published October 2023

Citation: Steiner T, Schulze R, Scharler R, Anca-Couce A. Extension of the layer particle model for volumetric conversion reactions during char gasification. Combustion and Flame. 2023:256,112940.


The so-called “layer model” or “interface-based model” is a simplified single particle model, originally developed for shorter computation time during computational fluid dynamics (CFD) simulations. A reactive biomass particle is assumed to consist of successive layers, in which drying, pyrolysis and char conversion occur sequentially. The interfaces between these layers are the reaction fronts. The model has already been validated for drying, pyrolysis and char oxidation. Layer models in the literature have commonly employed surface reactions at the reaction front to describe char conversion. In this work, the suitability of this surface reaction concept is assessed when gasifying biochar. It is shown that a particular layer model, already available, which originally employed surface reactions, was unable to adequately describe the mass loss during gasification of a biochar. In order to overcome this incapability, the model was extended to consider volumetric reactions in the char layer. The influence of intraparticle diffusion was considered through an effectiveness factor. The model is easily adaptable for different gas-solid kinetic rate laws, while still allowing for comparably fast solutions of the model equations. The extended model was validated using theoretical calculations and experimental measurements from literature. It was demonstrated that intraparticle diffusion can significantly slow down the biochar gasification process. A general guideline for when to employ volumetric reactions, rather than surface reactions, and when to consider intraparticle diffusion is provided based on the Thiele modulus as the criterion.

External Link


Contact Us

We invite you to contact our office under or a member of our personnel directly from this website. Fast and simple.

To Our Team Page