

Clean Air Technology for Biomass Combustion Systems

BioCAT – Clean air technology for small-scale combustion systems

Gabriel REICHERT, Marius WÖHLER, Manuel SCHWABL, <u>Christoph SCHMIDL</u>, Stefan AIGENBAUER, Hans BACHMAIER, Franz FIGL, Hans HARTMANN, Walter HASLINGER, Jens KIRCHHOF, Harald STRESSLER, Rita STURMLECHNER, Peter TUROWSKI, Bernhard VOGLAUER

Central-European Biomass Conference January 2014, Graz, Austria

Objectives

- Concept and Approach
- Methods

Results

- Catalytic material characterisation
- Catalyst system outside the stove
- Primary optimisation of stoves
- Catalyst system integrated in optimised stoves
- DemoCAT Catalyst technology demonstrator
- Conclusions and Outlook

Project objectives

New generation of biomass based room heating appliances

Optimising primary combustion conditions

Integration of a honeycomb type oxidation catalyst

STAFFIERI AG 🖸

bioenergy2020+

Technologie- und Förderzentrum

The BioCAT project approach

Characterise the catalyst technology

Develop methods to evaluate the project outcomes

Primary optimise combustion systems and integrate catalysts

Evaluate and demonstrate the project outcomes

Method I: Characterisation of catalytic material

Test Setup:

- Synthetic flue gas:
 - CO, CH₄, C₇H₈
- Pre-heating and mixing zone
- Flue gas measurement upand downstream of catalyst
- Connection to stove for TSP loading
- Results:
 - Basic catalytic performance characteristics

measuring section 2

Method II: Characterisation of catalyst (standalone/retrofit)

measuring section 1

Combustion

unit

- Principle:
- Test Setup:
 - Wood chip burner for flue gas "production"
 - Boiler with by-pass for flue gas temperature control
 - Fuel (water content) and burner settings for flue gas composition control
- Results:
 - Actual and mean reduction of CO, OGC and TSP

catalytic

converter

Measuring section

00

330 mm

Method III: Characterisation of Stove-integrated catalysts

- Principle:
- Test setup:
 - EN13240/13229
 - Test Fuels: Beech and Spruce
 - Tests with uncoated Carrier (Dummy, n=6) and with Catalyst (n=6) for each stove

Combustion

unit

Integrated

catalytic

converter

Results:

- Mean Reduction of CO, OGC and TSP
- Significant Reduction at defined Level of Confidence

Results: Catalytic material characterisation

Characteristic conversion temperatures for:

- Carbon Monoxide
- Methane
- Toluene
- Influence on conversion:
 - Residual Oxygen
 - Water Content
 - Volume Flow
 - CO Load
- Burn-off temperatures of TSP loaded on catalyst surface

SEVENTH FRAMEW

Results: Combustion system development Combustion optimisation by primary measures

- Avoidance of leakages (air tightness)
- Adapting air supply volume
- Implementing air staging
- Optimisation of pane ventilation

- Insulation of combustion chamber
- Implementation of post
 combustion chamber
- Energy management of firebed

Stove	А	В	С	D
Initial stoves – Optimized stoves - Test fuel spruce				
СО	- 74 %	- 63 %	- 56 %	- 44 %
OGC	- 72 %	- 40 %	- 78 %	- 47 %
TSP	n.a.	n.a.	- 38 %	- 40 %
η	+ 59 %	+7%	+ 34 %	±0%

Results: Combustion system development Primary combustion optimisation

- Extension of optimum (low emission) phase
- Still need for improvement in start and burn-out phase

Results: Integration of Catalyst Positioning according to measured Operation Characteristics

Sufficient high temperature

Accessible for maintenance

Measuring section

Results: Evaluation integrated Catalyst Reduction of Catalyst vs. Dummy

 Reduction in %*
 Mean
 Significant (85% confid.)

 CO
 74-97
 64-77

 OGC
 32-73
 0-32

 TSP
 0-59
 0-21

 * Test fuel: Spruce
 Spruce
 Spruce

catalytic

Combustion

Slide 15

Summary and Conclusions

- Primary optimisation of firewood stoves has shown high potential
 - Reduction ~ 40-80% for CO, OGC, TSP
 - Significant increase of efficiency
- Catalysts can further reduce emissions especially in start and burn-out phase
 - 80-90% CO, 40-70% OGC, 0-50% TSP
- Integration has important advantages compared to retrofit solutions
 - Higher temperatures
 - Primary effects of catalyst are considered
- Catalyst integrated prototypes perform
 close to pellet stoves in terms of emissions

Outlook

Long-term testing of catalyst integrated stoves

- Deactivation of catalyst
 - Reactivation measures (washing)
 - Time interval for replacement
- Influence of different use patterns
 - Safety aspects (blogging of catalysts in case of maloperation?)
- BioCAT Demonstrator 2.0
 - Operated with firewood
 - Including TSP measurement section

Acknowledgements

Company Partners:

STAFFIERI AG

Scientific and supporting Partners:

Funding:

The research leading to these results has received funding from the European Union Seventh Framework Program (FP7/2007-2013) under Grant Agreement n° 286978.

BioCAT Clean Air Technology for Biomass Combustion Systems

Thank you very much for your attention Christoph Schmidl Christoph.schmidl@bioenergy2020.eu

Supplemental Material

Measurement section catalyst evaluation

SEVENTH FRAMEWORK PROGRAMME

Catalyst characterisation

Influence analysis on conversion rate

Results: Combustion system development Temperature profiles of optimised stoves

- Temperature Profiles of potential integration positions:
- Basis for the integration of catalysts

