

Reliability of TGA data for characterization of alternative biomass feedstocks

Graz, 23.01.2020

Stefan Retschitzegger, Norbert Kienzl, Andrés Anca-Couce, Christos Tsekos, Scott Banks, Tzouliana Kraia, Francesco Zimbardi, Axel Funke, Paula Marques

Content

- Introduction
- Methodology
- Results
 - TGA test
 - Data evaluation
- Summary

Introduction – BRISK 2

- 15 European partners
- Development of methods and research infrastructure
 - thermochemical and biochemical conversion
 - enhanced measurement techniques
 - new biorefining approaches
 - simulation tools

Introduction – TGA round robin

Potential for future

- Biomass can play a more relevant role in the production of power, liquid fuels or chemicals
- → Thermo-chemical processes using ligno-cellulosic biomass

Biomass characterisation

- mass loss behaviour is commonly determined by TGA
- TGA results in literature have strong deviations
 - mainly attributed to biomass inhomogeneity
 - impact of institution, operator, equipment, ... not known

Introduction – TGA round robin

Variation of data in literature

Scope – TGA round robin

- Investigate the reproducibility of TGA biomass pyrolysis
- 7 European partners
- Eliminate influence of biomass inhomogeneity via homogenized feedstock
- Eliminate error from data evaluation → all results evaluated by one partner

Methodology – TGA round robin

- Fuels
 - Avicel® PH-101 cellulose
 - Beech wood
- low initial mass sample (ideally of 3 mg)
- Pyrolysis from 150 500 °C
- Detailed handling protocols

Methodology – TGA

Scheme of TGA

• m vs. t and dm/dt vs. t

Cellulose pyrolysis – Conversion α

- shape of the curves almost similar for all cases
- max reaction rate at 328.3 ± 9.2 °C; literature¹: 327 ± 5 °C

¹ Gronli et al. A round-robin study of cellulose pyrolysis kinetics by thermogravimetry. 1999

Cellulose pyrolysis – Modelling (single reaction)

- averaged error in the fitting: 2.9 ± 1.2 % → low error
- Error: mainly at temperatures around 350°C due to the tail of the DTG curve → especially pronounced in case #3

Beech wood pyrolysis Conversion α

- Beech wood: 1 peak, 1 shoulder Cellulose: one peak only
 → results from hemicellulose
- obtained deviations between participants are of a similar order as for cellulose

Beech wood pyrolysis Comparison of activation energies

- Activation energy E_a calculated by Isoconversional KAS method
- Standard deviations 20 25 kJ/mol within acceptable range
- One case significantly lower

Beech wood pyrolysis - modelling

- Beech is modelled simulating 3 components:
 - hemi-cellulose, cellulose, lignin
- Fluctuations in signals of some partners (e.g. #7)

Summary and Outlook

- TGA is widely used, but mass loss kinetics for biomass pyrolysis is still a non resolved topic.
- Round robin of TGA pyrolysis experiments with 7 partners
 - Pure Cellulose: satisfactory reproduction of pyrolysis experiments from literature (Gronli et al. 1999)
 - Beech Wood: deviations with different devices are of a similar order as for cellulose
 - BUT certain deviations are obtained in DTG curves for all cases
 - Detailed documentation of protocols necessary
 - Evaluation of protocols for elucidation of remaining variation

Acknowledgment

Funding received from European Union's Horizon 2020
Research and Innovation Programme under grant agreement
number 731101 (BRISK II) is gratefully acknowledged.

Thank you for your attention!

Norbert Kienzl norbert.kienzl@best-research.eu

www.best-research.eu