

Virtual biomass combustion plant

CEBC Graz, January 22nd, 2020

Kai Schulze

Bundesministerium
Digitalisierung und
Wirtschaftsstandort
Warkehr, Innovation
Und Technologie

Design aspects of biomass boilers & furnaces

2

Packed bed thermal conversion

Empirical release model

Release curves of major components

- Based on experimental data
- Fulfils mass and energy balance
- Free parameters

Single particle reactor, oxidising condition, fuel: poplar wood (cylindrical particle)

3

Packed bed thermal conversion

- Particle movement
 - Laminar Flow Model
 - Euler Granular Model
 - Discrete Element Method (DEM)
- Further extensions of the packed bed model:
 - NOx precursor species NO, NH₃ and HCN in the layer model, soot and PAH formation and destruction
 - Release behaviour of ash forming elements (K, Na, S, Cl, Pb, Zn) and coarse fly ash particles
 - Transient release model to describe of a complete wood log batch in a natural draft stove

Velocity field of a laminar flow model

Turbulent reactive flow

- Turbulent flows contain a spectrum of eddies
- Turbulence-reaction Models
 - Eddy Dissipation Model (EDM)
 - Eddy Dissipation Concept (EDC)
- Detailed chemical kinetics
 - Kilpinen 92
 - Kilpinen 97-skeletal for NOx prediction

Turbulent structures in a reactive flow

Turbulent reactive flow - extensions

Hybrid model (based on EDC)

Streak formation model:

$$(R_i)_{Hybrid} = \left(\frac{1}{Re_t}\right)(R_i)_{FRK} + \left(\frac{Re_t - 1}{Re_t}\right)(R_i)_{EDC} \quad for \ Re_t > 1$$

Fluctuations of concentration [-] (left) and mixing function [-] (right)

0

Convective Heat Exchanger Model

- Sub-models based on literature data
 - Staggered
 - In-line arrangement
- Influence of the flow direction on
 - Flow resistance
 - Convective heat transfer and radiation

Comparison of the flue gas temperature [°C] of a detailed simulation and the result of the heat exchanger model 30.01.2020

7

CEBC – Graz

Fine dust formation

- Ash forming vapors are released from the fuel bed
- Cooling of the flue gas causes:
 - Decrease of the vapor pressure of the components
 - If vapor pressure < saturation pressure
 - \rightarrow Fine particles formation

Average concentration at the boiler outlet: <u>Simulation:</u> 9,92 mg/Nm³ <u>Measurement:</u> 7,65 mg/Nm³

Total fine particle concentration (mg/Nm³ dry flue gas, 13% O_2 in a 70 kW pellet boiler

14.3

13.5

12.7 11.9

11.1

10.3

9.5

8.7 7.9

7.2

6.4 5.6

4.8

4.0 3.2

2.4 1.6 0.8 0.0

Ash deposit formation

- Deposition mechanisms
 - Fine particles
 - Ash vapors condensation
 - Coarse fly ash particles
- Coupling with a heat exchanger model
- Link to the corrosion model

Deposition rate of chlorine (kg/m²s) in the symmetry plane of the simulated plant.

High temperature corrosion model

- Detailed model
 - Based on local deposit formation
 - Prediction of the dominating local corrosion mechanism
 - Predicts local corrosion potential
- Empirical model
 - Predicts local corrosion potential as a function of the gas and wall temperature

Comparison of the mass loss calculated after 1000h (mm) with the detailed model (left) and with the empirical model (right).

