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Experimental and theoretical studies of steam methane reforming reactions with different
amount of hydrogen sulfide in the feed gas are presented. A two dimensional pseudo-
heterogeneous model is developed to simulate methane steam reforming reactions in a
packed bed tubular reactor. This model is based on mole and energy balance equations for
the catalyst and the fluid phases. Attention is given to the analysis of sulfur negative effects
on reforming process. A parametric study is done and effects of different steam to carbon
ratios, space velocities, temperatures and different amount of sulfur on methane conversion
and temperature distribution within the reactor are investigated. The results are verified
comparing to the experimental results. It is shown that even presented in the gas at very
low concentration levels (ppm), sulfur drastically decreases the conversion of methane. The
obtained results play a key role in design and optimization of an actual reactor.
Copyright © 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights
reserved.

Introduction

steam reforming reactions are industrially operated at a high
temperature up to 900 °C over nickel-alumina or noble metal
based catalysts, because a reasonable conversion of methane

In the latest years, the environmental problems derived from
useful energy generation sources and from the increment of
fossil fuels prices, have enhanced the development of new
technologies for energy production. Steam reforming of
methane produced by biomass gasification is one of the most
employed processes to produce hydrogen and synthesis gas
[1—4]. Synthesis gas, constituted by different quantities of
carbon monoxide and hydrogen, can also be used to produce
high purity hydrogen streams and chemical products, [5]. The
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is required in this endothermic process, [6—8]. Sulfur, on the
other hand, which also is incorporated in the biomass struc-
ture, is released into the product gas during gasification as
hydrogen sulfide. It is generally recognized that sulfur can
have devastating effects on the catalytic activity of supported
metal particles. Many catalytic reactions are poisoned by even
trace quantities of sulfur containing molecules such as
hydrogen sulfide. Since, synthesis gas produced by steam
reforming of low hydrocarbons are further used in the
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synthesis to mixed alcohols or Fischer—Tropsch products, it is
of interest to investigate steam reforming process without
cleaning the gas and desulfurization prior to the reactor.

Even though, different methods have been used to address
and simulate the steady state and non-steady state operation of
catalytic steam reformers, and several comprehensive reviews
have been written about reforming of methane [9-21], there is
no mechanism available which covers steam reforming of
methane including sulfur and published papers are very few in
numbers, [22—30]. This work considers a two dimensional
pseudo-heterogeneous model to mathematically simulate
steam reforming of methane in a fixed bed reactor including
reasonable amount of hydrogen sulfide. Using the same inlet
and process condition for experiments, makes it possible to
compare the modeling and experimental results and see how
well the modeling predict the experimental results. Moreover, a
parametric study is done to investigate the effects of different
reforming parameters such as sulfur, space velocity, steam to
carbon ratio and temperature on process efficiency.

Mathematical model
Steam reforming of methane involves, two reversible endo-

thermic reforming reactions, (1, 3) coupled with exothermic
water gas shift reaction, (2) [31],:

CH, + H,0CO +3H, 4Hb, = +206k]/mol (1)
CO +H,0-CO, + H, 4HJss = —41kJ/mol )
CH; +2H,0CO, +4H, 4HJs = +165k]J/mol (3)

The kinetic model for methane steam reforming reactions
on a nickel catalyst is based on a Langmuir—Hinshelwood
reaction mechanism and the intrinsic kinetic expressions re-
ported by Xu and Froment are adopted [10,11],:

P3 P
P% Pcu,Pu,0 — Hilco
R, = DEN? (43)
Py, Pco, |
Pszz PcoPu,o0 — —HZKZCOZ
R, = = DEN? = (4b)
k P§_Pco
% PCH4P£20 - Hng ’
R3 = DEN? (4C)
_ Ku,0Pu,0
DEN=1+ KCH4PCH4 + KcoPco + KHZPH; +— (4d)

P H,

Rate constants of the above equations are described by
Arrhenius type functions [31],:

B 1 28,879\ kmol kpa®*

k1 =9.49 x 10 exp( T kgh (5a)
_ " 8074.3\ kmol kpa

k, =4.39 x 10 exp( T > kgh (5b)

05
29, 336) kmol kpa (50)

k3 = 2.29 x 10% exp( T kgh

Ken, , Kn,, Kco, Kn,o are the constants which related to sur-
face adsorption in equilibrium and are functions of tempera-
ture. The equilibrium constants for reactions (1-3) were
calculated using the standard Gibbs energy of each reaction at
the corresponding temperature and are defined as [31],:

K; = 10266.76 x exp <726’f30 + 30.11> :kpa’ (5d)
K, = exp <&19O - 4.063) (S5e)
K3 = K1Kz:,kpa2 (5)

Partial pressures of gases were correlated to their
own concentrations by using the ideal gas law. The formation
rate of each component was then calculated by using equa-
tions (1)—(5f). For example, for methane and carbon dioxide
components the reaction rates are written as follow:

Rew, = —(R1 +Rs) (6a)

Reo, = (Ra +R3) (6b)

Pseudo-heterogeneous model considers transport by plug
flow and distinguishes between conditions in the fluid and in
the solid (catalyst) phases. The continuity and energy balance
equations for the fluid phase are written as [31],:

0C; oC; - 10 oC; s X
U, (E + urﬁ) = ? & (”lzr?) + kga‘f (CS - C‘) (73)

T 1
0z pCpu,

10T T .
( er <; g + W) — hfa‘, (T — Ts) (7b)

Where, a, is the specific surface area of the catalyst bulk per
reactor volume. The energy transport in axial direction is
dominated by the transport from axial convection, and thus
axial conduction is neglected. With no radial convection, the
only energy transport mechanism in radial direction is the
effective conduction.

When resistance to heat and mass transfer inside catalyst
pellets is important, the rate of reaction is not uniform
throughout the particle. The catalyst phase mass and energy
balance equations are written as [31],:

kg (C°S — Ci) = pc(1 — e)niR; (8a)

. 19 oT,
hyao (T3~ T) = 1 & <m‘*”sW> +pe(1— &) (n(— AH)R,  (8b)

Momentum equation which shows the pressure distribu-
tion in the packed-bed reactor was described by the Tall-
madge, who proposed an extension of Ergun's equation under
higher Reynolds numbers [32,33];:

dj _ 7fpfu22
dz~ dp

(9a)

f=w(u-1

42(p-1)
1.75+—= 9b
,uRepl/6 :| (b)
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The following general boundary and initial conditions are
applied to the reformer [31],:

z=0 Ci=0GCo

at OSYSR_)Tf:Ts:TO (10a)
aC;  oCs
at rfoaﬁf ar =0 (10b)
_ 0Ty  0Ts
at r-O—»W—W—O (10c)
aC; G
at r=R— dor or (10d)
T =Ts=T,

Fig. 1 — Sulfur poisoning scheme of the nickel catalysts.

at r=r,—C =C; (10e)

at r=r,->T=T;

(100

Where C°, T° indicate the conditions at the surface of
the catalyst. The effectiveness factor in the above reactions,
which expresses the ratio of the observed rate to that
calculated for surface conditions, are calculated as follows
[32],:

v dv
Aj@lz i=1,2,3 (11)

The set of equations are solved simultaneously with
pressure drop equation by state of the art COMSOL Multi-
physics software 4.3, to account for species concentration and
temperature distribution within the reactor. Wall heat trans-
fer coefficient and thermal conductivity are calculated using
the correlation reported by Dixon, [34,35].

Sulfur effects

Prior to steam reforming, sulfurous compounds must be
removed from the feed stream because of their poisonous
effects on the catalysts used. Under gasification and
reforming conditions, all sulfur compounds in biomass
will be converted to hydrogen sulfide, which is chemisorbed
on the nickel surface and decreases the catalyst activity.
Sulfur poisoning occurs because sulfur adsorbs strongly
on the active metal surface area of the catalyst, forming
surface sulfides. Sulfur is a selective poison and a

Vaporizer
R
Pump
R 3
H20

H2Zs CH4 CO COz

Vent

Fig. 2 — Schematic diagram of experimental setup.
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Table 1 — Catalyst parameters and operating conditions.

Parameter Value
Outside diameter of the catalyst 3.5 (mm)
Inside diameter of the catalyst 1.5 (mm)
Height of the catalyst particle 4 (mm)
Inlet pressure 1.163 (bar)
Inlet methane dry molar fraction 11 (%)
Inlet hydrogen dry molar fraction 39 (%)
Inlet carbon dioxide dry molar fraction 26 (%)
Inlet carbon monoxide dry molar fraction 22 (%)
Inlet nitrogen dry molar fraction 2 (%)
Catalyst bulk density 500 (kg/m?)
Inside diameter of the reactor 16 (mm)
Height of the catalyst in the reactor 100 (mm)

partial surface coverage is sufficient for the catalyst to
become essentially non-active which leads to the point that
hydrocarbon conversion stops or is no longer at acceptable
levels. This mechanism is shown in Fig. 1. Using a simple
Maxted model for poisoning and Temkin isotherm, we
recently compared the intrinsic rate expressions of
poisoned catalyst to sulfur free catalyst, and modeled sulfur
coverage, 65 [27],:

RS = RO;(1 - 6,)°

DPn,

f, —1.45—953-10°-T+4.17-10°-TIn <@>

Rate expressions for sulfur free catalyst (R%,), were dis-
cussed in previous sections.

Experimental procedure

The catalyst used in these experiments is a nickel based
catalysts supported on alumina, (NiAl,Os). It is a cylinder

shape catalyst with center hole. It has a constant outside
diameter of 3.5 mm and inside diameter of 1.5 mm. The
gases used in this study were chemically completely pure.
The gas flow rate system consists of mass flow controllers
which provide inlet gas in various blends of different gases,
hydrogen, methane, carbon monoxide, carbon dioxide and
Nitrogen as carrier gas. A bypass was inserted around the
reactor allowing sampling of feed gas. Water is evaporated
through heating tubes and a high performance liquid pump
is used to control the liquid water flow rate. The liquid water
was vaporized and mixed with the feed gas stream before
entering the reactor. The reactor is made from a glass tube
with 16 mm inside diameter. For the laboratory experiments
typically 11 gr of catalyst was loaded into the reactor and
the height of the catalyst bed is about 10 cm. The bulk
density of the catalyst is 500 (kg/m®). Due to endothermic
nature of the process, heat should be supplied into the
reactor; therefore, outer surface temperature of the
reformer is kept at 1123 (K) by means of electrical heating.
Thermocouples are placed within the reactor and are con-
nected to a temperature indicator, computer monitoring
system and temperature controllers. The gas leaving the
reactor column was cooled in a condenser where liquid
water is removed. Finally, the dry gas stream were routed
into the online analyzer where their concentrations are
analyzed, measured and presented in Lab view program
which controls the online analyzer. A schematic diagram of
experimental setup is shown in Fig. 2. Inlet gas conditions at
different steam to carbon ratios, space velocities, sulfur
concentrations and temperatures (depending on each
experiment) were conducted in the reactor. The gases from
the outlet of mass flow controllers are directed to come
exactly above the packed bed and nitrogen is used as carrier
gas. Different amount of water is fed into the reactor in
order to adjust the desired steam to carbon ratio. Catalyst
properties and operating conditions for the steam reformer
are shown in Table 1.
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Fig. 3 — (a, b) Methane conversion and temperature distribution in the reactor, (a) methane conversion (b) axial temperature

distribution.
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Exp. vs. Mod., sv=10000 1/'hr, T=1123 (K)
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Steam to carbon ratio

Fig. 4 — Comparison of modeling and experimental results
of methane conversion.

Result and discussions

Modeling and experimental results presented in this work,
provide the temperature distribution and methane conversion
profiles along the reactor. Effects of different operating pa-
rameters such as steam to carbon ratio, different amount of
sulfur, temperature distribution and space velocity on process
efficiency are discussed in following sections.

Steam to carbon ratio effects

The effect of different steam to carbon ratios on methane
conversion with and without sulfur included in the gas, are
shown in Fig. 3(a). The reactor wall temperature is set at 1123
(K), the space velocity is 10,000 1/h. As it is shown by
increasing steam to carbon ratio from 1.5 to 2.5, methane
conversion increases significantly, but there is not a big dif-
ference in methane conversion when steam to carbon ratio

a5 [ t 1 t + n
—— s=200 ppm
40 L s=150 ppm 4
- $=100 ppm
35 L s=75 ppm i
— $=50 ppm
~ 30 L s=25 ppm i
B without Sulfur
[ =4
0 25 -
[
[
>
c
S 20 g
=
T
o
15 B
10 i
5 d
0 L L L o
0 0.02 0.04 0.06 0.08 0.1

z coordinate (m)

(a)

increases from 2.5 to 3. Sulfur has huge negative effect on
conversion process by deactivating the catalyst and methane
conversion decreases drastically. The effect of different
steam to carbon ratios on temperature distribution along the
reactor is shown in Fig. 3(b). When sulfur is not included in
the gas, the temperature decreases as soon as the gas enters
the reactor and then increases. This is due to the high
endothermic nature of the reforming reactions which de-
creases the temperature. Later, heat transfer from the outer
surface of the reactor, increases the temperature again.
Increasing the steam to carbon ratio increases the outlet
temperature due to the exothermic nature of the water gas
shift reaction. When sulfur is included in the gas, deactivates
the catalyst and decreases the reaction rate of reforming
reactions. Therefore, the temperature decreases uniformly
up to the outlet of the reactor. In both cases, with and
without sulfur, increasing steam to carbon ratio makes
temperature distribution more uniform along the reactor
length. Experimental results are compared to modeling re-
sults in Fig. 3(b) and Fig. 4 for temperature distribution and
methane conversion respectively. Although experimental
and modeling results are in very good agreement in both
cases, with and without sulfur included in the gas, when
sulfur is included in the gas, due to deactivation effects of
sulfur on highly endothermic reforming reactions, modeling
predicts the experimental results exactly.

Sulfur effects

The effect of different amount of sulfur on methane con-
version and temperature distribution is investigated in
Fig. 5(a,b) and Fig. 6. The reactor wall temperature is set at
1123 (K) and kept constant, the space velocity is 10,000 1/h
and steam to carbon ratio is set at 3, (S/C = 3). As it is shown
in Fig. 5(a), even at very low concentration levels of hydrogen

1123 fF ; T 1 . .
11225 B
1122 — 4
1121.5 *
1121 *
g 11205 B .
@
5 1120 *
® . .
g 1119.5 Experiment |
5
= 1119 * | — s=200 ppm 3
11185 - —— s=150 ppm | |
—— =100 ppm
1118 | s=75 ppm .
11175 —— s=50 ppm i
$=25 ppm
1117 FE E
— without sulfur
1116.5 | . 1 . | h
0 0.02 0.04 0.06 0.08 0.1

z coordinates (m)

(b)

Fig. 5 — (a, b) Methane conversion and temperature distribution in the reactor, (a) methane conversion (b) axial temperature

distribution.
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Exp. vs. Mod., $/C=3, sv=10000 1'hr, T=1123 (K)

—e— Experimental
—=— Modeling

Methane conversion (%)

50 75 100 150 200
sulfur amount {ppm)

25

Fig. 6 — Comparison of modeling and experimental results
of methane conversion in the reactor.

sulfide (25 ppm), catalytic activity is highly reduced and
methane conversion is about 90 percent less than the case
where there is no sulfur included in the gas. When hydrogen
sulfide level increases to 150 ppm, it is shown that the
catalyst is almost deactivated and increasing the concen-
tration level does not decrease the methane conversion
significantly.

Temperature distribution along the reactor is shown in
Fig. 5(b). Hydrogen sulfide deactivates the catalyst and
reforming reactions. As a result, temperature does not
decrease significantly in the reactor. Heat transfer from the
outer surface of the reactor increases the outlet temperature
compare to the case when sulfur is not included in the gas.
Increasing the hydrogen sulfide level of concentration, makes
temperature distribution more uniform along the reactor.
Experimental and modeling results of methane conversion
are shown in Fig. 6. As it is mentioned in previous section,
experimental and modeling results are in very good agree-
ment at higher level of sulfur included in the gas.
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z coordinate (m)

Temperature (K)

Temperature effects

Fig. 7(a,b) and 8 show the effect of different temperatures on
methane conversion and temperature distribution in the
reactor. Space velocity is 10,000 1/h, steam to carbon ratio is
set to 3 and sulfur amount is constant and is set to 160 ppm
and the temperature varies from 1000 to 1150 (K). As it is
shown in Fig. 7(a,b), increasing reactor wall temperature,
heavily affects conversion of methane and temperature dis-
tribution in the reactor. Even when sulfur is included in the
gas, increasing temperature, increases methane conversion
significantly. Higher wall temperature also affects tempera-
ture distribution within the reactor by increasing the reaction
rate of reforming reactions. Therefore, as it is shown in
Fig. 7(b), when sulfur is not included in the gas, temperature
decreases more significantly as soon as the gas enters the
reactor. This is because of endothermic nature of the
reforming reactions. Later, wall temperature supplies more
heat into the reactor and increases the temperature along the
reactor gradually. As it is shown, higher wall temperature
increases the temperature at the outlet of the reactor. Com-
parison of experimental and modeling result of methane
conversion at different temperatures are shown in Fig. 8. It
shows very good agreement between simulation and experi-
ment results.

Space velocity effects

Space velocity is an important parameter for design and
optimization of steam reformers and has a high impact on
methane conversion and temperature distribution within
the reactor. In Fig. 9(a,b) and Fig. 10, it is shown that how
changing space velocity affects the reformer performance.
Steam to carbon ratio is set at 3, (S/C = 3) and sulfur amount
is constant and is set to 160 ppm and outer reactor wall
surface temperature is kept at 1123 (K). Fig. 9(a) shows the
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990

(b)
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Fig. 7 — (a, b) Methane conversion and temperature distribution in the reactor, (a) methane conversion (b) axial temperature

distribution.
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Methane conversion (%)

Fig. 8 — Comparison of modeling and experimental results
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of methane conversion in the reactor.

effect of different space velocities on methane conversion
with and without presence of sulfur in the gas. It is evident

that decreasing space velocity increases methane conver-

sion. The reason is that at lower space velocities the contact

time between gas and catalyst pellets increases and as a
result methane conversion
included in the gas, the same effect is seen but methane
conversion and therefore, hydrogen yield are decreased due

increases. When sulfur

to negative effect of sulfur on reforming reactions.

Temperature distribution along the reactor length is

shown in Fig. 9(b). As it is seen, increasing space velocity

does not affect temperature drop as soon as the gas enters
the reactor. The reason is that reforming reactions take
place very quickly and are not affected by changing space

velocity at very short distance from the inlet. Decreasing

space velocity increases heat transfer from the reactor wall
to the gas and therefore increases the outlet temperature.
Addition of sulfur to the gas makes temperature distribution

(a)

z coordinate (m)

t 1 t T t 1

60 |- B
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S5 | — without sulfur,sv=98000 1/hr il

sob| T without sulfur, sv=8000 1/hr // |

without sulfur,sv=7000 1/hr rd -

45 | — without sulfur,sv=6000 1/hr b
= a0 b sulfur=160 ppm, sv=10000 1/hr |
g — sulfur=160 ppm, sv=9000 1/hr
=
g 35 1| — sulfur=160 ppm, sv=8000 1/hr 1
g 30 | | — sulfur=160 ppm, sv=7000 1/hr i
e — sulfur=160 ppm, sv=6000 /hr
< 25 F - 4
T
o
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5| J}____!_—f—‘,-,—’
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0 0.02 0.04 0.06 0.08 0.1

more uniform within the reactor due to its deactivating ef-
fects on reforming reactions. Experimental and modeling
results of methane conversion are compared in Fig. 10. It
shows that how well modeling predicts experimental re-
sults and when sulfur is included in the gas, the results are
very exact.

Conclusion

Two-dimensional heterogeneous model is developed to
investigate hydrogen sulfide deactivation effects on
methane steam reforming process in a packed bed reactor.
Producer gas from biomass gasification has small amounts
of hydrogen sulfide which deactivates the catalyst under
reforming conditions. The novelty of the work is that the
effect of different amount of hydrogen sulfide on methane
conversion and temperature distribution within the reactor
under different processing conditions such as space veloc-
ity, temperature, and steam to carbon ratio are investigated.
A wide range of experiments have been done and the
simulation and experimental results are compared. It is
shown that even when present in the gas in very small
amount of concentration level (ppm) sulfur decreases the
reforming efficiency drastically and has a huge effect on
temperature distribution within the reactor. The obtained
results from simulation are compared with experimental
results. Although experimental and modeling results are in
very good agreement in both cases, with and without sulfur
included in the gas, when sulfur is included in the gas, due
to deactivation effects of sulfur on highly endothermic
reforming reactions, modeling predicts the experimental
results almost exactly. It is shown that some of the sulfur
negative effects can be reduced by increasing the tempera-
ture, at which the steam reforming is run.
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1116 H b
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1106
1104
1102 |
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Fig. 9 — (a, b) Comparison of methane conversion and temperature distribution at different space velocities within the
reactor with and without sulfur, S/C = 3, T = 1120 (K), (a) methane conversion, (b) axial temperature distribution.
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Exp. vs. Mod., S/C=3, T=1123 (K)
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Fig. 10 — Comparison of modeling and experimental
results of methane conversion in the reactor.
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Nomenclature

a, External pellet surface area per unit reactor volume
m m?

C; Concentration of reactant ikmol/m?>

Cp Specific heat capacity J/(Kg*K)

Cs Solid concentration kmol/m?

d; Inner diameter m

d, Outer diameter m

dp Equivalent particle diameter m

DEN Denominator in the expressions of reaction rates

Der Effective radial diffusion coefficient m?%/s

f Friction factor

h¢ Heat transfer coefficient at catalyst surface W/(m?K)

kg Mass transfer coefficient from gas to solid interface
m? /(m?)

K; Adsorption constant of component j

k1 Rate coefficient of reaction 1 kmol bar °>(kg cat s)

k2 Rate coefficient of reaction 2 kmol/(kg cat bar s)

k3 Rate coefficient of reaction 3 kmol bar %(kg cat s)

K; Equilibrium constant of reaction i

K1 Equilibrium constant of reaction 1 bar?

K> Equilibrium constant of reaction 2

K Equilibrium constant of reaction 3 bar?

n Molar flow rate kmol/s

p Pressure bar

P; Partial pressure of component i bar

R Radius of the reactor m

R, Gas constant kJ/(kmol K)

Rep Particle Reynolds number

R; Reaction rate of component i mol/(kg cat s)

R Free sulfur reaction rate mol/(kg cat s)

R} Reaction rate with sulfur mol/(kg cat s)

R; Reaction rate of component j mol/(kg cat s)

R, Reaction rate of reaction 1 mol/(kg cat s)
R, Reaction rate of reaction 2 mol/(kg cat s)
Rs Reaction rate of reaction 1 mol/(kg cat s)
Ry Reaction rate of reaction 4 mol/(kg cat s)
T Temperature K

Tw Wall temperature K

U, Gas velocity in radial direction m/s

Uy, Gas velocity in axial direction m/s

v Volume m?

Greek letters
AH° Enthalpy of formation kJ/mol

€ Porosity of packed bed reactor
ni Effectiveness factor of reaction i
Aer Effective thermal conductivity W/(mK)
w Viscosity of the mixture Pa s

s Fluid density kg/m?

Pe Catalyst density kg/m?

O Sulfur surface coverage
Subscripts

0 Initial condition

c Catalyst

er Effective

f Fluid

g Gas

P Particle

r Radial direction

S Solid

w Reactor wall

z Axial direction

Superscripts

0 Standard condition

s Condition at the catalyst surface
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