

Application of Optimization-based Energy Management Systems for Interconnected District Heating Networks

22nd Styrian Workshop on Automatic Control

Valentin Kaisermayer, Daniel Muschick, Markus Gölles, Wolfgang Rosegger, Jakob Binder, Joachim Kelz

BundesministeriumBundesministeriumDigitalisierung undKlimaschutz, Umwelt,WirtschaftsstandortEnergie, Mobilität,Innovation und Technologie

1

Agenda

- Project Overview and Motivation
- Representation of Thermal Systems in Energy Management System (EMS)
- Handling Low-Level Controllers
- Hybrid Coupling of Energy Systems
- Results

Motivation Project ThermaFLEX

- Interconnected DH networks at and around Leibnitz
 - Different production technologies, costs, storage sizes, waste heat potential,...
 - Bidirectional heat transfer
- Goal
 - Minimization of CO₂ emissions/costs
 - High-level coordination of all networks

Optimization-based Energy Management System

22nd Styrian Workshop on Automatic Control

06.09.2022

Motivation Energy Management System (EMS)

- What we mean with energy management system (EMS)?
 - Supervisory controller coordinating producers, storage and consumers in an energy network
- Applications

- Building energy management
- Control of district heating (DH) networks

8°

Motivation Optimization-based EMS

- Prosumers
 Models the physical behavior and constraints
- Connections
 Ensures conservation of mass and energy

Motivation Challenges

- Representing thermal systems in an MPC Temperature levels are important
- **Dealing with low-level controllers** EMS is often only added during a retrofit and only able to control a subset of the production units
- Non-cooperative coupling Typically multi-owner setting for interconnected DH networks

Representation of Thermal Systems in EMS

Representation of Thermal Systems for EMS Motivation: Simple boiler model

- Typical EMS only consider energy flows - In the case of thermal energy this means constant temperatures $\dot{Q}(t) = c_{\rm p} \dot{m}(t) (T_{\rm in} - T_{\rm out})$
- In reality the temperatures vary; model is non-linear $\dot{Q}(t) = c_p \dot{m}(t)(T_{in}(t) - T_{out})$ If outlet is controlled at e.g. 90 °C
- Solution: "multi-temperature" model; model is still linear

$$\dot{Q}(t) = \sum_{i} c_{p} \dot{m}_{\text{in},i}(t) T_{\text{in},i} + c_{p} \dot{m}_{\text{out}}(t) T_{out} \qquad \dot{m}_{\text{in},i}(t) \in \text{SOS2}$$

8

Representation of Thermal Systems for EMS Thermal Energy Storage (TES) Model

- The constant temp. model would only allow for two layers (hot and cold)
- In reality no ideal stratification between a hot and cold layer
- Does not fit with well with const. temp. model

This is a problem if we have lowlevel controllers that operate on temperatures

22nd Styrian Workshop on Automatic Control

06.09.2022

Representation of Thermal Systems for EMS Thermal Energy Storage (TES) Model

Idea [1]

- Layers of constant temperature T_i
- States: Layer heights h_i

Accurately represent temp. distribution in TES in MILP

Why do we need this level of detail? e.g. accurately predicting low-level TES controllers

[1] Muschick, D., Zlabinger, S., Moser, A., Lichtenegger, K., & Gölles, M. (2022). A multi-layer model of stratified thermal storage for MILP-based energy management systems. Applied Energy, 314, 118890. https://doi.org/10.1016/j.apenergy.2022.118890

Handling Low-Level Controllers

Handling Low-Level Controllers Motivation

- EMS is often only added during a retrofit
- EMS may at first be only allowed to...
 - provide **optimal setpoints** for low-level controllers
 - control a subset of the production units
- Needs to gain trust first

Represent low-level controllers in EMS

Handling Low-Level Controllers Motivation

- EMS was not allowed to control the gas boiler in Leibnitzerfeld directly Still controlled via a low-level controller
- Could only be influenced indirectly via
 the imported heat

Handling Low-Level Controllers Motivation

- Low-level controllers are very often "simple" but highly non-linear
 - Two-point controller
 - PI with anti-windup
 - IF-THEN-ELSE logic
- How to represent them in a **MILP** optimization problem?
 - Mixed logical-dynamical system [1]

[1] Bemporad, A., & Morari, M. (1999). Control of systems integrating logic, dynamics, and constraints. *Automatica*, *35*(3), 407–427. https://doi.org/10.1016/S0005-1098(98)00178-2

06.09.2022

Handling Low-Level Controllers Example: Two-Point Controller with hysteresis

- "When are we in state ON?"
- $[u_{k+1}] \leftrightarrow [(\neg u_k \wedge \delta_{1,k}) \vee (u_k \wedge \neg \delta_{2,k})]$
- MILP formulation?
- Idea (logic to inequality):
 - $\begin{array}{ll} & \delta_1 \lor \delta_2 \text{ is equivalent to} \\ & \delta_1 + \delta_2 \geq 1 \end{array}$
 - $\begin{array}{cc} & \delta_1 \lor \neg \delta_2 \text{ is equivalent to} \\ & & \delta_1 + (1 \delta_2) \geq 1 \end{array}$
- Convert to CNF and incorporate as inequality constraints

Hybrid Coupling of Energy Systems

06.09.2022

Hybrid Coupling of Energy Systems Motivation

- Control of interconnected DH networks with different owners
- **Different economic interests** (non-cooperative)
- Global (social) optimum, not adequate
- **Mixture** of cooperative and non-cooperative coupling; "Coalitions"

Hybrid Coupling of Energy Systems **Mathematical Representation**

Cooperative coupling

- Each agent has local constraints and a local objective function
- Agents minimize the global objective function

One opt. problem Social optimum

Non-cooperative coupling

- Each agent has local constraints and a local objective function
- Each agent minimizes only its local cost function

 \min J $oldsymbol{x}_i{\in}\mathcal{X}_i$

$$f_i(\boldsymbol{x}_i), \quad i=1,\ldots,N$$

subject to

 $\sum A_i x_i = b$

N coupled opt. problems Nash equilibrium

Hybrid Coupling of Energy Systems Mathematical Representation – Cooperative Coupling

$$\min_{oldsymbol{x}_i \in \mathcal{X}_i} \qquad \sum_{i=1}^N f_i(oldsymbol{x}_i) \ ext{subject to} \qquad \sum_{i=1}^N oldsymbol{A}_i oldsymbol{x}_i = oldsymbol{b}$$

- Separable Programme
- Solution is social optimum

Apply augmented Lagrangian method Augmented Lagrange function

$$\mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}) = \sum_{i=1}^{N} f_i(\boldsymbol{x}_i) + \boldsymbol{\lambda}^T \left(\sum_{i=1}^{N} \boldsymbol{A}_i \boldsymbol{x}_i - \boldsymbol{b} \right) \\ + \frac{\rho}{2} \left\| \sum_{i=1}^{N} \boldsymbol{A}_i \boldsymbol{x}_i - \boldsymbol{b} \right\|_2^2$$

• Dual ascent $\boldsymbol{x}_{i}^{(k+1)} = \underset{\boldsymbol{x} \in \mathcal{X}_{i} \in \mathcal{X}_{i} \dots \times \mathcal{X}_{N}}{\operatorname{arguinin}_{i} \left(\boldsymbol{x}_{i}^{(k)} (\boldsymbol{x}_{i}^{(k)})_{-i}^{(k)} \right)}$ $\boldsymbol{\lambda}^{(k+1)} = \boldsymbol{\lambda}^{(k)} + \rho \left(\sum_{i=1}^{N} \boldsymbol{A}_{i} \boldsymbol{x}_{i}^{(k+1)} - \boldsymbol{b} \right)$

Hybrid Coupling of Energy Systems

Mathematical Representation – Non-cooperative coupling

$$\min_{\boldsymbol{x}_i \in \mathcal{X}_i} \qquad f_i(\boldsymbol{x}_i), \quad i = 1, \dots, N$$

subject to

$$\sum_{i=1}^N oldsymbol{A}_i oldsymbol{x}_i = oldsymbol{b}$$

- N-player game
- Solution is a Nash equilibrium

N coupled opt. problems

Apply augmented Lagrangian method for each

$$egin{split} \mathcal{L}_i(oldsymbol{x}_i,oldsymbol{\lambda}_i) &= f_i(oldsymbol{x}_i) + oldsymbol{\lambda}_i^T \left(oldsymbol{A}_ioldsymbol{x}_i + \sum_{j
eq i}oldsymbol{A}_joldsymbol{x}_j - oldsymbol{b}
ight) \ &+ rac{
ho}{2} \left\|oldsymbol{A}_ioldsymbol{x}_i + \sum_{j
eq i}oldsymbol{A}_joldsymbol{x}_j - oldsymbol{b}
ight\|_2^2 \end{split}$$

Dual ascent

$$oldsymbol{x}_i^{(k+1)} = rgmin_{oldsymbol{x}_i \in \mathcal{X}_i} \mathcal{L}_i(oldsymbol{x}_i,oldsymbol{\lambda}_i^{(k)},oldsymbol{x}_{-i}^{(k)})$$

$$oldsymbol{\lambda}_i^{(k+1)} = oldsymbol{\lambda}_i^{(k)} +
ho \left(oldsymbol{A}_i oldsymbol{x}_i^{(k+1)} + \sum_{j
eq i} oldsymbol{A}_j oldsymbol{x}_j^{(k)} - oldsymbol{b}
ight)$$

06.09.2022

1

22nd Styrian Workshop on Automatic Control

Hybrid Coupling of Energy Systems Mathematical Representation - Comparison

ALM for cooperative coupling ALM for non-coop. coupling

$$\boldsymbol{x}_{i}^{(k+1)} = \underset{\boldsymbol{x}_{i} \in \mathcal{X}_{i}}{\operatorname{argmin}} \mathcal{L}\left(\boldsymbol{x}_{i}, \boldsymbol{\lambda}^{(k)}, \boldsymbol{x}_{-i}^{(k)}\right) \qquad \boldsymbol{x}_{i}^{(k+1)} = \underset{\boldsymbol{x}_{i} \in \mathcal{X}_{i}}{\operatorname{argmin}} \mathcal{L}_{i}(\boldsymbol{x}_{i}, \boldsymbol{\lambda}_{i}^{(k)}, \boldsymbol{x}_{-i}^{(k)})$$
$$\boldsymbol{\lambda}^{(k+1)} = \boldsymbol{\lambda}^{(k)} + \rho\left(\underbrace{\sum_{i=1}^{N} \boldsymbol{A}_{i} \boldsymbol{x}_{i}^{(k+1)} - \boldsymbol{b}}_{i=1}\right) \qquad \boldsymbol{\lambda}_{i}^{(k+1)} = \boldsymbol{\lambda}_{i}^{(k)} + \rho\left(\underbrace{\boldsymbol{A}_{i} \boldsymbol{x}_{i}^{(k+1)} + \sum_{j \neq i} \boldsymbol{A}_{j} \boldsymbol{x}_{j}^{(k)} - \boldsymbol{b}}_{j\neq i}\right)$$
$$\text{Very similar} \Rightarrow \text{Idea: Combination}$$
for hybrid coupling

Hybrid Coupling of Energy Systems Mathematical Representation – Hybrid Coupling

$$\begin{aligned} \boldsymbol{x}_{i}^{(k+1)} &= \operatorname*{argmin}_{\boldsymbol{x}_{i} \in \mathcal{X}_{i}} \mathcal{L}\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j \neq i}^{(k)}, \boldsymbol{\lambda}_{i}^{(k)}\right) \\ \boldsymbol{\lambda}_{i,c}^{(k+1)} &= \boldsymbol{\lambda}_{i,c}^{(k)} + \rho\left(\boldsymbol{A}_{i} \boldsymbol{x}_{i}^{(k+1)} + \sum_{j \neq i}^{N} \boldsymbol{A}_{i} \boldsymbol{x}_{j}^{(k)}\right) - \boldsymbol{b}\right), \quad i = 1, \dots, N, \ c \in \mathcal{C}_{\text{non-coop}} \\ \boldsymbol{\lambda}_{i,c}^{(k+1)} &= \boldsymbol{\lambda}_{i,c}^{(k)} + \rho\left(\boldsymbol{A}_{i} \boldsymbol{x}_{i}^{(k+1)} + \sum_{j \neq i}^{N} \boldsymbol{A}_{i} \boldsymbol{x}_{j}^{(k+1)}\right) - \boldsymbol{b}\right), \quad i = 1, \dots, N, \ c \in \mathcal{C}_{\text{coop}} \end{aligned}$$

V. Kaisermayer, D. Muschick, M. Horn, and M. Gölles, "Operation of Coupled Multi-Owner District Heating Networks via Distributed Optimization," Energy Reports, vol. 7, pp. 273–281, Oct. 2021.

22

06.09.2022

06.09.2022

Hybrid Coupling of Energy Systems Simulation Study

Test Problems

- All three grids **cooperative**
- All three grids noncooperative
- The two grids that belong to the same owner cooperate; the third does not (hybrid)

Shaded area is range of solutions for different input datasets

Real Operation

06.09.2022

Real Operation Pre-Simulation Study

- Cooperative EMS
 was implemented
 - "Fair" contract between owners
- Simulation study as a best-case scenario
 - With and without (base case) heat exchanger
- Real operation

25

V. Kaisermayer *et al.*, "Smart control of interconnected district heating networks on the example of '100% Renewable District Heating Leibnitz," *Smart Energy*, vol. 6, May 2022.

35% reduction in CO₂ emissions 7% fuel cost reduction during 1 month (April 2021)

Real Operation Heat Transfer Station

Maintenance during summer

Running since April 2021

Saved 7537 MWh of gas boiler operation About^{*} 1,9 Mt of CO₂

From Leibnitz to Leibnitzerfeld From Leibnitzerfeld to Leibnitz

* 0,201 tCO₂/MWh @ 80% efficiency

06.09.2022

Real Operation Gas Boiler Operation

 During KW15 the EMS was given full control

Reduced Gas Boiler Operation by 70% Better Operating Conditions: (longer run time, lower power level)

Application of Optimization-based Energy Management Systems for Interconnected District Heating Networks

22nd Styrian Workshop on Automatic Control

Valentin Kaisermayer, Daniel Muschick, Markus Gölles, Wolfgang Rosegger, Jakob Binder, Joachim Kelz

Bundesministerium Digitalisierung und Wirtschaftsstandort

Bundesministerium
 Klimaschutz, Umwelt,
 Energie, Mobilität,
 Innovation und Technologie

