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Agenda

• Project Overview and Motivation

• Representation of Thermal Systems in Energy Management 

System (EMS)

• Handling Low-Level Controllers

• Hybrid Coupling of Energy Systems

• Results
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• Interconnected DH networks
at and around Leibnitz

– Different production technologies, costs, 
storage sizes, waste heat potential,…

– Bidirectional heat transfer

• Goal

– Minimization of CO2 emissions/costs

– High-level coordination
of all networks
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Motivation

Project ThermaFLEX

Optimization-based

Energy Management System

We are here

https://greenenergylab.at/projects/100-renewable-

district-heating-leibnitz/
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• What we mean with energy 
management system (EMS)?

– Supervisory controller 
coordinating producers, 
storage and consumers
in an energy network

• Applications

– Building energy management

– Control of district heating (DH) 
networks

– ...

Motivation

Energy Management System (EMS)

      

   

Bildquellen: thermaflex.greenenergylab.at

Bildquellen: Lunghammer – TU Graz
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• Prosumers
Models the physical behavior and 

constraints

• Connections
Ensures conservation of mass and energy

• MPC problem

Motivation

Optimization-based EMS

Connections

Prosumers

In our case a 

MILP
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Motivation

Challenges

• Representing thermal systems in an MPC
Temperature levels are important

• Dealing with low-level controllers
EMS is often only added during a retrofit

and only able to control a subset of the production units

• Non-cooperative coupling
Typically multi-owner setting for interconnected DH networks
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Representation of Thermal 

Systems in EMS
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Representation of Thermal Systems for EMS

Motivation: Simple boiler model

• Typical EMS only consider energy flows 

– In the case of thermal energy this means constant temperatures

• In reality the temperatures vary; model is non-linear

•  olution: “ ulti-te perature”  o el;  o el is still linear

ሶ𝑄(𝑡) = 𝑐p ሶ𝑚(𝑡)(𝑇in(𝑡) − 𝑇out)

ሶ𝑄(𝑡) = 𝑐p ሶ𝑚(𝑡)(𝑇in − 𝑇out)

ሶ𝑄 𝑡 =

𝑖

𝑐p ሶ𝑚in,𝑖 𝑡 𝑇in,𝑖 + 𝑐𝑝 ሶ𝑚out 𝑡 𝑇𝑜𝑢𝑡

If outlet is 

controlled at 

e.g. 90 °C

ሶ𝑚in,𝑖 𝑡 ∈ SOS2
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• The constant temp. model 

would only allow for two 

layers (hot and cold)

• In reality no ideal 

stratification between a hot 

and cold layer

• Does not fit with well with 

const. temp. model

Representation of Thermal Systems for EMS

Thermal Energy Storage (TES) Model

This is a problem if we have low-

level controllers that operate on 

temperatures
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Idea [1]

• Layers of constant 

temperature 𝑇𝑖
• States: Layer heights ℎ𝑖

Representation of Thermal Systems for EMS

Thermal Energy Storage (TES) Model

[1] Muschick, D., Zlabinger, S., Moser, A., Lichtenegger, K., & 

Gölles, M. (2022). A multi-layer model of stratified thermal 

storage for MILP-based energy management systems. Applied 

Energy, 314, 118890. 

https://doi.org/10.1016/j.apenergy.2022.118890

ℎo,1

ℎo,2
ℎi,2

ℎi,1 𝑇1, ℎ1

𝑇amb

𝑇4, ℎ4

𝑇2, ℎ2

𝑇3, ℎ3

Why do we need this level of detail?

e.g. accurately predicting low-level TES 

controllers

Accurately represent temp. 

distribution in TES in MILP
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Handling Low-Level Controllers
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Handling Low-Level Controllers

Motivation

• EMS is often only added during a retrofit

• EMS may at first be only allowed to...

– provide optimal setpoints for low-level controllers

– control a subset of the production units

• Needs to gain trust first

Represent low-level 

controllers in EMS
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• EMS was not allowed to control the gas 

boiler in Leibnitzerfeld directly
Still controlled via a low-level controller

• Could only be influenced indirectly via 

the imported heat 

Handling Low-Level Controllers

Motivation
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Gas Boiler

Heat Transfer 

Station
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Handling Low-Level Controllers

Motivation

• Low-level  ontrollers are very o ten “si ple” 

but highly non-linear

– Two-point controller

– PI with anti-windup

– IF-THEN-ELSE logic

• How to represent them in a MILP optimization problem?

– Mixed logical-dynamical system [1]

[1] Bemporad, A., & Morari, M. (1999). Control of systems 

integrating logic, dynamics, and constraints. Automatica, 35(3), 

407–427. https://doi.org/10.1016/S0005-1098(98)00178-2
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• “When are we in state ON?”

• 𝑢𝑘+1 ↔ [(¬𝑢𝑘 ∧ 𝛿1,𝑘) ∨ (𝑢𝑘 ∧ ¬𝛿2,𝑘)]

• MILP formulation?

• Idea (logic to inequality):

– 𝛿1 ∨ 𝛿2 is equivalent to

𝛿1 + 𝛿2 ≥ 1

– 𝛿1 ∨ ¬𝛿2 is equivalent to

𝛿1 + 1 − 𝛿2 ≥ 1

• Convert to CNF and incorporate as 

inequality constraints 

Handling Low-Level Controllers

Example: Two-Point Controller with hysteresis

OFF

𝑢 = 0
ON

𝑢 = 1

𝛿1 = 1 ↔ [𝑒 ≤ 𝑚] 

𝛿2 = 1 ↔ [𝑒 ≥ 𝑀]

06.09.202215
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Hybrid Coupling of 

Energy Systems
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• Control of interconnected DH networks

with different owners

• Different economic interests

(non-cooperative)

• Global (social) optimum, not adequate

• Mixture of cooperative and 

non- ooperative  oupling; “Coalitions”

Hybrid Coupling of Energy Systems

Motivation
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Cooperative coupling

• Each agent has local constraints 

and a local objective function

• Agents minimize the global 

objective function

Non-cooperative coupling

• Each agent has local constraints 

and a local objective function

• Each agent minimizes only its 

local cost function

Hybrid Coupling of Energy Systems

Mathematical Representation

N coupled opt. problems

Nash equilibrium

One opt. problem

Social optimum
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• Separable Programme

• Solution is social optimum

• Augmented Lagrange function

• Dual ascent

Hybrid Coupling of Energy Systems
Mathematical Representation – Cooperative Coupling

Apply augmented 

Lagrangian method
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• N-player game

• Solution is a Nash equilibrium

• Augmented Lagrange functions

• Dual ascent

Hybrid Coupling of Energy Systems
Mathematical Representation – Non-cooperative coupling

N coupled opt. problems

Apply augmented Lagrangian

method for each
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ALM for cooperative coupling ALM for non-coop. coupling

Hybrid Coupling of Energy Systems
Mathematical Representation - Comparison

Very similar  Idea: Combination 

for hybrid coupling
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Hybrid Coupling of Energy Systems
Mathematical Representation – Hybrid Coupling

V. Kaiser ayer, D. Mus hi k, M.  orn, an  M. Gölles, “Operation 

of Coupled Multi-Owner District Heating Networks via Distributed 

Opti ization,” Energy Reports, vol. 7, pp. 273–281, Oct. 2021.
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Test Problems

• All three grids cooperative

• All three grids non-

cooperative

• The two grids that belong to 

the same owner cooperate; 

the third does not (hybrid)

Hybrid Coupling of Energy Systems

Simulation Study

Shaded area is range of 

solutions for different 

input datasets 
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Real Operation
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• Cooperative EMS 
was implemented

– “Fair”  ontra t 
between owners

• Simulation study 
as a best-case scenario

– With and without (base 
case) heat exchanger

• Real operation

CO E issions in t

         2  

 i . without
heat e  hange

 i . with
heat e  hange

Real Operat ion

CO2 E issions

 otal Fuel Cost  in E R

 2 k   k   k

 i . without
heat e  hange

 i . with
heat e  hange

Real Operat ion

 otal Fuel Cost

 ill its h  ei nitz  ei nitzer el 

Real Operation

Pre-Simulation Study

V. Kaisermayer et al., “  art  ontrol o  inter onne te   istri t 

heating networks on the e a ple o  ‘   % Renewa le Distri t 

 eating  ei nitz,’” Smart Energy, vol. 6, May 2022.

35% reduction in CO2 emissions

7% fuel cost reduction

during 1 month (April 2021)



• Running since April 2021

– Computes new schedule every 15min

• However, most of the time the EMS was 

only allowed to control the heat transfer 

station

– Still a substantial improvement was made

06.09.202222nd Styrian Workshop on Automatic Control26

Real Operation

Heat Transfer Station
Maintenance during summer

Saved 7537 MWh of gas 

boiler operation

About* 1,9 Mt of CO2

* 0,201 tCO2/MWh @ 80% efficiency
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Real Operation

Gas Boiler Operation

• During KW15 the EMS 

was given full control

Reduced Gas Boiler Operation by 70%

Better Operating Conditions:

(longer run time, lower power level)
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