

Smart control of hydrogen-based multi-energy systems

SESAAU25 Copenhagen, Denmark Including annotations and remarks in highlighted boxes

Bernd Riederer, Paul Kury, Valentin Kaisermayer, Daniel Muschick, Christopher Albert, Fabian Radner, Wolfgang Siegl, Markus Gölles

Motivation

- Current decarbonization strategies rely mostly on
 - o increased sector coupling
 - the integration of <u>various volatile energy carriers</u>

Challenges

- Energy systems become more interconnected
- Energy carriers (heat, electricity, hydrogen, ...)
 should be used in the most synergetic way

Increasing complexity and range of energy carriers requires a flexible and efficient control of all components

Renewable energy system of the future (Al-generated)

Requirements for smart control of energy systems

optimal operation

(efficiency, CO₂ emissions, ...)

optimization-based ensures optimal operation of the system by targeted utilization of the different technologies

volatility

of production and consumption

predictive

integration of weather and price forecasts calculation of forecasts for yields and consumptions

variation range

of the configurations

→ modular

automatic (re)formulation of the optimization problem based on the specifications of the components

Smart control of multi-energy systems

Addressing all requirements:

A **modular** framework based on a **model-predictive** controller

Such a framework for a supervisory controller considering electricity and heat as an energy carrier has been developed. See references.

^[1] Moser, Andreas et.al. (2020). DOI: 10.1016/j.apenergy.2019.114342.

^[2] Muschick, Daniel et.al. (2022).

Smart control of hydrogen-based multi-energy systems

In this talk we will consider an extension of such a framework with hydrogen components.

^[1] Moser, Andreas et.al. (2020). DOI: 10.1016/j.apenergy.2019.114342.

^[2] Muschick, Daniel et.al. (2022).

Main hydrogen components

Considerations for hydrogen

- Non-linear density-pressure relation
- Pressurized flow dynamics

The main problem when integration hydrogen components lead to the following question.

Simple (MILP) formulation or non-linear models?

 \rightarrow Investigating different approaches for calculating: p = f(m)

Linearized (PWA)

Empiric data approximated by piecewise affine function (PWA)

Non-Linear

Physics-based: Redlich-Kwong Eq.

Use case A: pressure model comparison

Use case A: pressure model comparison Mass: linear gas model Mass: nonlinear ga We see that non-linear and the linearized model result in 50 approximately the same pressure and SOC / [kg]40 mass-range, while the linear is far off. 30 20 10 0 Pressure: linear gas model Pressure: nonlinear g Pressure / [bar] The linearized version produces 600 introduces some error due to kinks in the linearized approximation. 400 200 0 05:00 07:00 04:00 06:00 08:00 09:0

Time

7b

Use case B: Full system & compressor model

More involved use case also considering electricity from volatile sources.

PWA model

Use case B: Full system & compressor model

- Problems of linear approach
 - Overestimating mass and underestimating pressure
 → dangerous in real life
 - Increased energy demand due to higher H₂ production
 - Demand at fixed pressure level cannot be modelled reliably

Linear approach has multiple shortcomings

Run time analysis

Pressure model	Solve Time (Use Case A)	Solve Time (Use Case B)
Linear	(0.03 ± 0.01) s	(0.36 ± 0.24) s
PWA	(0.08 ± 0.01) s	(0.88 ± 0.68) s
Non-linear	$(152 \pm 22) s$	no solution in reasonable time

Conclusion and outlook

Key messages

New challenges in sector-coupled energy systems require **smart control strategies**

Hydrogen is part of this game, but **non-linear dynamics** requires careful consideration

Hydrogen aspects

Mass flow model is suitable for smart control Non-linear: too slow for real application

Linear: severely underestimates pressure **Linearized**: provide fast and reliable results

Next steps

Including temperature dependency for control of waste-heat utilization

Real-life **implementation** and application for co-simulation with real plant

Bernd Riederer Senior Researcher Automation and Control T +43 5 02378-9229 bernd.riederer@best-research.eu

Paul Kury (Former) Student Assistant **Automation and Control**

Markus Gölles Area Manager Automation and Control T +43 5 02378-9208 markus.goelles@best-research.eu

SESAAU25 - Copenhagen, Denmark

Bernd Riederer, Paul Kury, Valentin Kaisermayer, Daniel Muschick, Christopher Albert, Fabian Radner, Wolfgang Siegl, Markus Gölles

