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Motivation
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Renewable energy system of the future (AI-generated)

▪ Current decarbonization strategies rely mostly on

o increased sector coupling

o the integration of various volatile energy carriers

▪ Challenges

o Energy systems become more interconnected

o Energy carriers (heat, electricity, hydrogen, …) 

should be used in the most synergetic way

Increasing complexity and range of energy carriers requires 

a flexible and efficient control of all components



3

Requirements for smart control of energy systems

volatility

of production and consumption

variation range

of the configurations

optimal operation

(efficiency, CO2 emissions, …)

→ optimization-based
ensures optimal operation of the system 
by targeted utilization of the different technologies

→ predictive
integration of weather and price forecasts
calculation of forecasts for yields and consumptions

→ modular
automatic (re)formulation of the optimization problem 
based on the specifications of the components
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Smart control of multi-energy systems

Addressing all requirements:

A modular framework based on 
a model-predictive controller

[1] Moser, Andreas et.al. (2020).

DOI: 10.1016/j.apenergy.2019.114342.

[2] Muschick, Daniel et.al. (2022). 

DOI: 10.1016/j.apenergy.2022.118890.

Such a framework for a supervisory controller considering electricity and 

heat as an energy carrier has been developed. See references.

https://www.doi.org/10.1016/j.apenergy.2019.114342
https://www.doi.org/10.1016/j.apenergy.2022.118890
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Smart control of hydrogen-based multi-energy systems

[1] Moser, Andreas et.al. (2020).

DOI: 10.1016/j.apenergy.2019.114342.

[2] Muschick, Daniel et.al. (2022). 

DOI: 10.1016/j.apenergy.2022.118890.

In this talk we will consider an extension of

such a framework with hydrogen components.

https://www.doi.org/10.1016/j.apenergy.2019.114342
https://www.doi.org/10.1016/j.apenergy.2022.118890
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Main hydrogen components

H2 Tank Compressor Electrolyser Fuel Cell

Considerations for hydrogen
o Non-linear density-pressure relation

o Pressurized flow dynamics
Simple (MILP) formulation or non-linear models?

→ Investigating different approaches for calculating: 𝑝 = 𝑓(𝑚)

Linear Non-LinearLinearized (PWA)

Ideal gas law
Physics-based:

Redlich-Kwong Eq.

Empiric data approximated by

piecewise affine function (PWA)

Modelling H2 components for smart control

The main problem when integration hydrogen 

components lead to the following question.
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6a [1] van der Roest, Els et.al. (2023). 

DOI: 10.1016/j.ijhydene.2023.03.374.

The hydrogen tank 

needs to consider the

non-linear density-

pressure relation.

Possible approaches

are shown here:

• Real reference data

• Non-linear equations

• Ideal gas law

https://doi.org/10.1016/j.ijhydene.2023.03.374
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6b [1] van der Roest, Els et.al. (2023). 

DOI: 10.1016/j.ijhydene.2023.03.374.

The compressor has a non-linear behaviour when increasing the pressure of the gas. 

The mass-flow is here a function of the electricity input and the pressure rise.

This is described by the compressor map.

https://doi.org/10.1016/j.ijhydene.2023.03.374
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Modelling H2 components for smart control
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[1] van der Roest, Els et.al. (2023). 

DOI: 10.1016/j.ijhydene.2023.03.374.

*taken from [1]

Electrolyser and fuel cell 

are similar components 

transforming electricity to 

hydrogen or vice versa 

with some efficiency.

https://doi.org/10.1016/j.ijhydene.2023.03.374
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Modelling H2 components for smart control
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[1] van der Roest, Els et.al. (2023). 

DOI: 10.1016/j.ijhydene.2023.03.374.

https://doi.org/10.1016/j.ijhydene.2023.03.374
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Use case A: pressure model comparison

H2-output & 

-demand

Control 

schedule

H2 mass 

stored 

H2

pressure

First use case 

study comparing 

the operating 

schedules from 

our smart 

controller for the 

three pressure 

models.
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Use case A: pressure model comparison

We see that non-linear and the 

linearized model result in 

approximately the same pressure and 

mass-range, while the linear is far off.

The linearized version produces 

introduces some error due to kinks in 

the linearized approximation.
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Use case B: Full system & compressor model 

PWA model

More involved use case 

also considering electricity 

from volatile sources.



Use case B: Full system & compressor model 

▪ Problems of linear approach

o Overestimating mass and 
underestimating pressure
→ dangerous in real life

o Increased energy demand due to 
higher H2 production

o Demand at fixed pressure level 
cannot be modelled reliably

9

Linear approach has multiple shortcomings



Run time analysis
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Pressure model
Solve Time

(Use Case A)

Solve Time

(Use Case B)

Linear 0.03 ± 0.01 s 0.36 ± 0.24 s

PWA 0.08 ± 0.01 s 0.88 ± 0.68 s

Non-linear 152 ± 22 s no solution in reasonable time

PWA modelLinear model
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Conclusion and outlook

Key messages

New challenges in sector-coupled energy systems require smart control strategies

Hydrogen is part of this game, but non-linear dynamics requires careful consideration

Hydrogen aspects

Next steps

Including temperature dependency for control of waste-heat utilization

Real-life implementation and application for co-simulation with real plant

Mass flow model is suitable for smart control

Linear: severely underestimates pressure

Non-linear: too slow for real application

Linearized: provide fast and reliable results
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