

CO-λ optimization

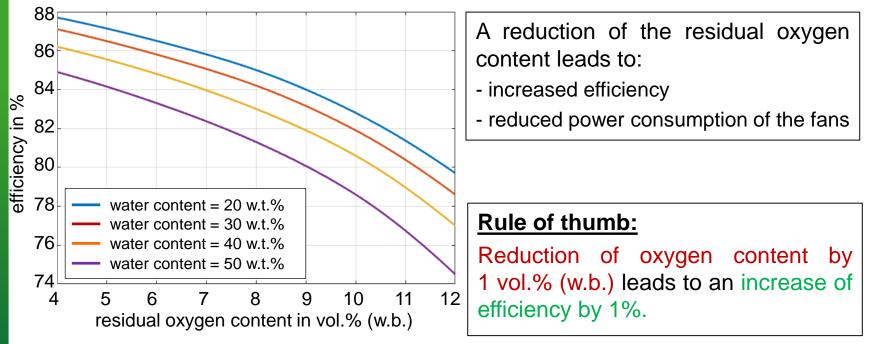
Operation of biomass boilers at maximum efficiency and with complete combustion

Christopher Zemann, Markus Gölles

Bundesministerium Digitalisierung und Wirtschaftsstandort **Bundesministerium** Verkehr, Innovation und Technologie

agentur wien Ein Fonds de Stadt Wien

wirtschafts



1

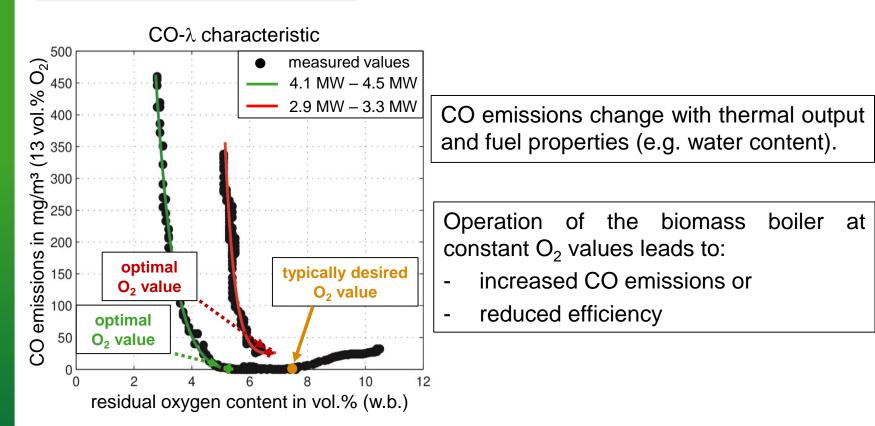
Oxygen content – efficiency

Efficiency of the biomass boiler as a function of the residual oxygen content

Typical biomass boiler with a nominal capacity of 2 MW (thermal output).

Fuel costs (20 EUR je m³)

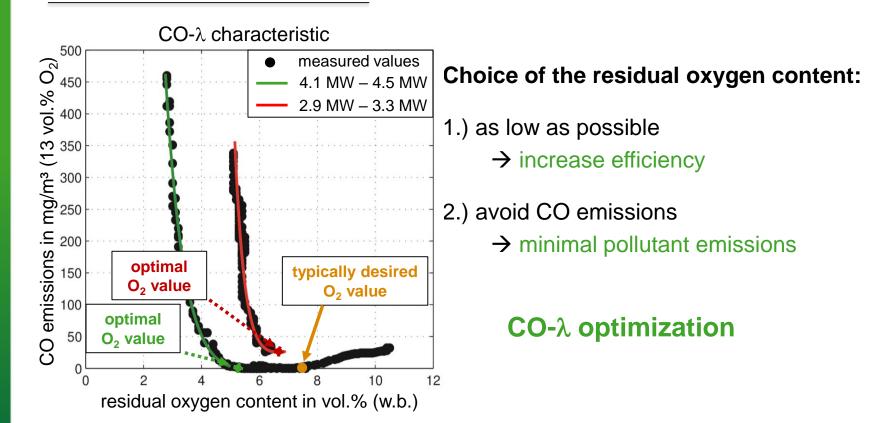
- annual heat output: 6 800 000 kWh (3400 full load hours)
- annual fuel consumption: 9 100 m³ wood chips
- 1 2% fuel reduction leads to
- a cost reduction of 1 820 EUR 3 640 EUR per year


Electricity costs (100 EUR / MWh)

- flue gas fan nominal capacity (el.): 5 kW
- secondary air fan nominal capacity (el.): 1 kW
- O_2 reduction: 1 2 vol.% (from 8 vol.% to 7 6 vol.%)
- cost reduction: 250 EUR 500 EUR per year

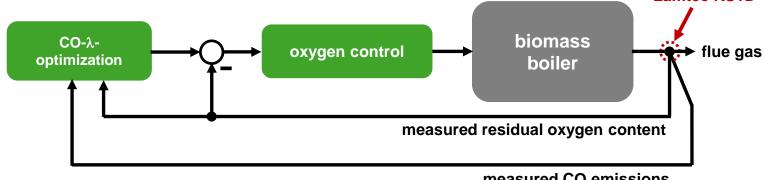
Total cost reduction: 2 070 EUR – 4 140 EUR per year

Oxygen content – pollutant emissions



- Legal CO limits cannot be met
- Increased emissions of particulate matter
- Tarring / fouling of the heat exchanger
 - \succ reduced heat transfer \rightarrow reduced efficiency
 - > long-term fouling of the heat exhanger \rightarrow expensive maintenance

CO emissions should be avoided to guarantee a stable, clean and efficient operation of the biomass boiler


Operating the biomass boiler

Functioning principle of the CO- λ optimization

The CO- λ optimization determines the optimum residual oxygen content and defines it as the desired value for the existing oxygen control. Lamtec KS1D

measured CO emissions

The combined KS1D combustion sensor provided by LAMTEC simultaneously measures the oxygen content of the flue gas and the CO emissions.

Only a desired value for the residual oxygen content is defined

- \rightarrow the existing O2 controller is still used and remains unchanged
- → minimal effort for implementation

O₂ sensors are often faulty

- → the residual oxygen content is always adjusted precisely to achieve minimal CO emissions
- → measurement errors are automatically compensated

The biomass boilers is always operated optimally

- \rightarrow independently of the boiler's thermal output
- \rightarrow independently of the fuel
- \rightarrow combustion is always as complete as possible

Long-term validation

Heating plant

- management: s.nahwaerme.at
 Energiecontracting GmbH
- 2 biomass boilers
 - 1 MW and 2.5 MW
- annual heat output: 16000 MWh
- customers: 175

Heating plant in Fuschl am See.

The CO- λ optimization has been implemented at one of the biomass boilers

- Nominal capacity: 2.5 MW
- Fuel: Wood chips (water content: 30-50 w.t.%)

Long-term validation

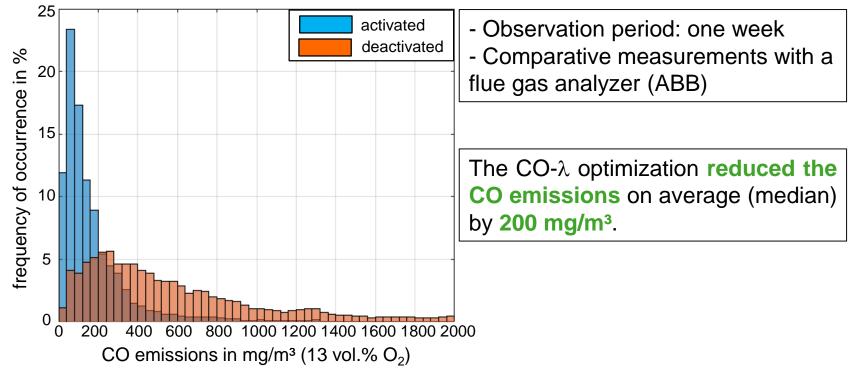
- conducted over an entire heating periode (November 2018 to March 2019)
- alternating operation of the biomass boiler with activated and deactivated CO- λ optimization (activated for 2 days, then deactivated for 2 days, repeat)
- this ensured that comparable conditions were always ensured (e.g. thermal output and fuel water content).

Method for estimating changes in the efficiency

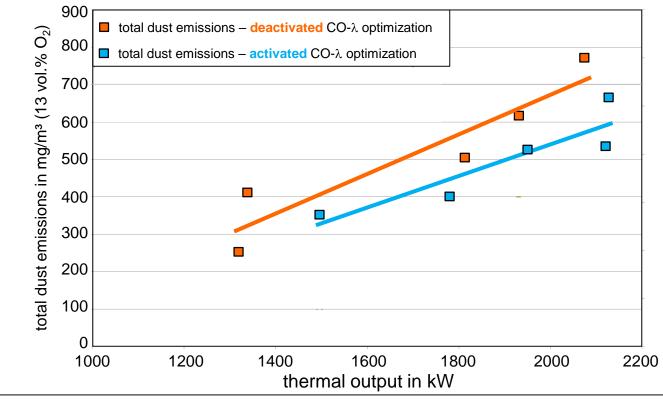
- measurement of the delivered thermal output (water)
- recording the number of fuel supply cycles (stoker cycles)
- > Efficiency: number of stoker cycles per MWh delivered heat

Long-term validation – results

activated	31462	cycles	stoker cycles
CO- λ optimization	1154.8	h	operating hours
	2814.7	MWh	delivered heat
	2.44	MW	mean thermal output
	11.18	cycles / MWh	


	11.62	cycles / MWh	
	2.41	MW	mean thermal output
	3154.0	MWh	delivered heat
CO- λ optimization	1310.6	h	operating hours
deactivated	36651	cycles	stoker cycles

The CO- λ optimization reduced the fuel consumption by 3.8%.


Long-term validation – CO emissions

Distribution of the CO emissions with activated and deactivated CO- λ optimization

Long-term validation – total dust emissions

The CO- λ optimization reduced the total dust emissions by 19.5%.

The long-term validataion of the CO- λ optimization in the biomass boiler in Fuschl am See led to the following results:

- reduction of fuel consumption (-3.8%)
- reduction of mean CO emissions (-200 mg/m³ (13 vol.-% O2))
- reduction of the mean total dust emissions (-19.5%)

The CO- λ optimization simultaneously improved the biomass boiler's efficiency and the pollutant emissions.

$\text{CO-}\lambda$ optimization automatically operates the biomass boiler with the optimal residual oxygen content

- \rightarrow independently of the boiler's thermal output
- \rightarrow independently of the fuel
- \rightarrow combustion is always as complete as possible

As a result, CO- λ optimization improves the combustion process

- \rightarrow operation with minimum pollutant emissions
- \rightarrow operation with maximum combustion efficiency
- \rightarrow savings in electricity costs
- \rightarrow oxygen measurement errors are automatically compensated

BEST – Bioenergy and Sustainable Technologies GmbH

Christopher Zemann Automation and control

E-Mail: christopher.zemann@best-research.eu Telefon: + 43 5 02378-9227 Dr. Markus Gölles Automation and control

E-Mail: markus.goelles@best-research.eu Telefon: + 43 5 02378-9208

