

Bioenergy and Sustainable Technologies

Bundesministerium Digitalisierung und Wirtschaftsstandort 💳 Bundesministerium Verkehr, Innovation und Technologie

agentur wien Ein Fonds der Stadt Wien

wirtschafts

Long-term verification of a new modular method for CO- λ -optimisation

6. Mitteleuropäische Biomassekonferenz Session: Saubere Luft und effiziente Heizwerke

Christopher Zemann, Frank Hammer, Markus Gölles

Graz, 23.01.2020

Bundesministerium Digitalisierung und Wirtschaftsstandort Bundesministerium
 Verkehr, Innovation
 und Technologie

2

Oxygen content - boiler efficiency

Boiler efficiency as a function of the residual oxygen content of the flue gas

Oxygen content - pollutant emissions

The CO- λ -characteristic changes with the thermal load and the fuel.

LAMTEC

Operating the biomass boiler with a constant value for O_2 results in:

- increased CO-emissions or
- decreased boiler efficiency

CO-\lambda-optimisation: Operation of the biomass boiler with a value for O₂ which

- maximises the boiler efficiency and simultaneously
- minimises the CO-emissions

The CO- λ -optimisation can be implemented at all biomass boilers with existing O₂-controller \rightarrow It is a **modular method**.

Long-term verification

Heating plant:

- management: s.nahwaerme.at
 Energiecontracting GmbH
- 2 biomass boilers
 - 1 MW and 2.5 MW
- annual heat output: 16000 MWh
- customers: ~175

Heating plant in Fuschl am See.

The CO- λ -optimisation has been implemented at one of the biomass boilers

- nominal capacity: 2.5 MW
- fuel: wood chips (water content: 30-50 w.t.%)

Long-term verification - description

Procedure for the long-term verification:

- time period: November 2018 to March 2019 (5 months)
- The modular CO-λ-optimisation was repeatedly activated for 2 days and subsequently deactivated for 2 days to ensure comparable conditions.

Method of calculating the boiler efficiency

- The boiler's thermal output was measured and from it the total delivered heat was calculated for activated and deactivated CO-λ-optimisation.
- The number of stoker cycles was recorded for activated and deactivated CO-λ-optimisation.
- The boiler efficiency is calculated as total delivered heat per stoker cycle for activated and deactivated CO-λ-optimisation.
 23.01.2020

Long-term verification - result overview

activated	31462	cycles	stoker cycles
CO-λ-optimisation	1154.8	h	operating hours
	2814.7	MWh	total delivered heat
	2.44	MW	mean thermal output
	11.18	cycles / MWh	

	11.62	cycles / MWh	
	2.41	MW	mean thermal output
	3154.0	MWh	total delivered heat
CO-λ-optimisation	1310.6	h	operating hours
deactivated	36651	cycles	stoker cycles

The modular CO- λ -optimisation reduced the fuel consumption by 3.8%.

3.81% fewer cycles per MWh needed with the CO- λ -optimisation

Long-term verification - CO-emissions

Distribution of the CO-emissions with activated und deactivated CO-λ-optimisation

9

Long-term verification - dust emissions (before electrostatic precipitator)

Summary and conclusions

The modular CO-λ-optimisation

- defines an optimal desired value for the O₂-controller of the biomass boiler.
- can be applied at all biomass boilers with existing O₂-controller.

During the long-term verification the modular CO- λ -optimisation

- reduced the fuel consumption by -3.8%
- reduced the average CO-emissions by -200 mg/m³
- reduced the total dust emissions on average by -19.5%

The modular CO- λ -optimisation improves the boiler's efficiency while simultaneously decreasing pollutant emissions.

BEST – Bioenergy and Sustainable Technologies GmbH

Dipl.-Ing. Christopher Zemann Automatisierungs- und Regelungstechnik

E-Mail: christopher.zemann@best-research.eu Telefon: + 43 5 02378-9227 <u>Dipl.-Ing. Dr. Markus Gölles</u> Automatisierungs- und Regelungstechnik E-Mail: markus.goelles@best-research.eu Telefon: + 43 5 02378-9208

LAMTEC Meß- und Regeltechnik für Feuerungen GmbH & Co. KG

Dr.-Ing. Frank Hammer Vertrieb Produktmanagement Sensorik, Messsysteme

E-Mail: hammer@lamtec.de Telefon: +49 (6227) 6052-75