Publications

Other Publications | 2014

Scenedesmus obliquus as Source for Biogas: Anaerobic Digestion of Untreated and Pre-treated Biomass.

Gruber M, Zohar E, Jerney J, Bochmann G, Obbard JP, Schagerl M, Fuchs W, Drosg B. Scenedesmus obliquus as Source for Biogas: Anaerobic Digestion of Untreated and Pre-treated Biomass, 15. Tagung der Sektion Phykologie der DGB 2014, 23rd-26th of February 2014, Stralsund, Germany.

Details
Peer reviewed papers | 2023

Screw reactors and rotary kilns in biochar production - A comparative review

Moser K, Wopienka E, Pfeifer C, Schwarz M, Seldmayer I, Haslinger W. Screw reactors and rotary kilns in biochar production - A comparative review

External Link Details

One promising technology in the field of residue valorization is the pyrolytic conversion of biomass to biochar. There are a lot of proven technologies for this task, with many of them being quite distinctive. Biochar has a lot of valuable properties and it shows potential to be applicated in many different fields of industry as a green carbon resource. Thus, as the demand for its production rises, more and more people from different fields share interest in the same technologies and the demand for guidance in form of readily available information increases. Two prominent technologies rather similar in appearance are rotary kilns and screw reactors. Both technologies consist of a long, hollow cylinder and both technologies use some form of longitudinal rotation as a means to transport feedstock. In this review, both technologies are described and their biggest differences and similarities are discussed, all under the aspect of biochar production. In total, 21 unique rotary kilns and 58 unique auger reactors were identified. The paper addresses process specific aspects, like heat supply or residence time, but it also gives an overview on current research and general aspects like scale-up considerations. Differences between both technologies were found in all of these aspects, with some of the most pronounced being the bigger maximum capacities and the greater residence time distributions in rotary kiln pyrolysis. Both technologies are viable candidates for producing biochar on a commercial level, however, literature comparing the influence of the reactor type on biochar properties was very scarce. As a future outlook it is recommended to produce data that can be compared on a quantitative level, so a more accurate assessment of each technologies up- and downsides can be made.

Other Publications | 2023

Second generation biomass gasification: The Syngas Platform Vienna - current status

Fürsatz K, Karel T, Weber G, Kuba M. Second generation biomass gasification: The Syngas Platform Vienna - current status. BEST Center Day. 28 June 2023

Download PDF Details

Steam gasification in a dual fluidized bed (DFB) reactor has already been developed in the power sector from lab- to commercial-scale for woody biomass as feedstock. A trend towards utilizing feedstock of lower quality, such as low-grade biomass, biogenic residues or waste drives the development of the technology in terms of reactor design, gas cleaning and optimizing operation parameters. Additionally, the need for production of sustainable end products more valuable than electricity and heat leads to the embedding of DFB gasification into complete process chains.

Peer reviewed papers | 2014

Seeing about soil — management lessons from a simple model for renewable resources

Lichtenegger K, Schappacher W. Seeing about soil — management lessons from a simple model for renewable resources. International Journal of Modern Physics C. 2014;25(8).

External Link Details

Employing an effective cellular automata model, we investigate and analyze the build-up and erosion of soil. Depending on the strategy employed for handling agricultural production, in many cases we find a critical dependence on the prescribed production target, with a sharp transition between stable production and complete breakdown of the system.

Strategies which are particularly well-suited for mimicking real-world management approaches can produce almost cyclic behavior, which can also either lead to sustainable production or to breakdown.

While designed to describe the dynamics of soil evolution, this model is quite general and may also be useful as a model for other renewable resources and may even be employed in other disciplines like psychology.

Peer reviewed papers | 2022

Self-Heating of Biochar during Postproduction Storage by O2 Chemisorption at Low Temperatures

Phounglamcheik A, Johnson N, Kienzl N, Strasser C, Umeki K. Self-Heating of Biochar during Postproduction Storage by O2 Chemisorption at Low Temperatures. Energies. 2022.15:380

External Link Details

Biochar is attracting attention as an alternative carbon/fuel source to coal in the process industry and energy sector. However, it is prone to self-heating and often leads to spontaneous ignition and thermal runaway during storage, resulting in production loss and health risks. This study investigates biochar self-heating upon its contact with O2 at low temperatures, i.e., 50–300 °C. First, kinetic parameters of O2 adsorption and CO2 release were measured in a thermogravimetric analyzer using biochar produced from a pilot-scale pyrolysis process. Then, specific heat capacity and heat of reactions were measured in a differential scanning calorimeter. Finally, a one-dimensional transient model was developed to simulate self-heating in containers and gain insight into the influences of major parameters. The model showed a good agreement with experimental measurement in a closed metal container. It was observed that char temperature slowly increased from the initial temperature due to heat released during O2 adsorption. Thermal runaway, i.e., self-ignition, was observed in some cases even at the initial biochar temperature of ca. 200 °C. However, if O2 is not permeable through the container materials, the temperature starts decreasing after the consumption of O2 in the container. The simulation model was also applied to examine important factors related to self-heating. The results suggested that self-heating can be somewhat mitigated by decreasing the void fraction, reducing storage volume, and lowering the initial char temperature. This study demonstrated a robust way to estimate the cooling demands required in the biochar production process.

Conference presentations and posters | 2011

Sensorbasierte Sortierung zur Erzeugung einer Deponiefraktion aus einer MBA-Schwerfraktion - Praxiserfahrungen und Vergleich verschiedener Aufbereitungsalternativen

Meirhofer M, Ragossnig A, Pieber S, Sommer M. Sensorbasierte Sortierung zur Erzeugung einer Deponiefraktion aus einer MBA-Schwerfraktion - Praxiserfahrungen und Vergleich verschiedener Aufbereitungsalternativen, Waste-to-Resources 2011, 24th-27th of May 2011, Hannover, Germany.

Details

The processing of heterogeneous waste is a major challenge for waste treatment equipment used in mechanical-biological (MB) waste treatment plants. This conference contribution focuses on the technical feasibility and efficiency of different technologies for the processing of a heavy waste fraction from a MB-plant which contains a high portion of high caloric components. The aim is to meet the requirements for waste to be landfilled in Austria. Also economic considerations with regard to the implementation of an additional separation step and the resulting changes in the waste routing are discussed. The processing technologies looked at comprise sensor-based sorting technologies (NIR, X-ray transmission) as well as traditional mechanical density separation technologies such as a jigger and cross-flow air classification.

Other papers | 2010

Sewage Sludge Ash to phosphorus fertiliser (II): variables influencing heavy metal removal during thermochemical treatment

Mattenberger H, Fraissler G, Jöller M, Brunner T, Obernberger I, Herk P, et al. Sewage sludge ash to phosphorus fertiliser (II): Influences of ash and granulate type on heavy metal removal. Waste Manage. 2010;30(8-9):1622-33.

External Link Details
Other papers | 2008

Sewage Sludge Ash to phosphorus fertiliser: variables influencing heavy metal removal during thermochemical treatment

Mattenberger H, Fraissler G, Brunner T, Herk P, Hermann L, Obernberger I. Sewage sludge ash to phosphorus fertiliser: Variables influencing heavy metal removal during thermochemical treatment. Waste Manage. 2008;28(12):2709-22.

External Link Details
Peer reviewed papers | 2015

Short term online corrosion measurements in biomass fired boilers. Part 1: Application of newly developed mass loss probe

Retschitzegger S, Gruber T, Brunner T, Obernberger I. Short term online corrosion measurements in biomass fired boilers. Part 1: Application of a newly developed mass loss probe. Fuel Process Technol 2015;137:148-156.

External Link Details
Peer reviewed papers | 2016

Short term online corrosion measurements in biomass fired boilers. Part 2: Investigation of the corrosion behavior of three selected superheater steels for two biomass fuels

Retschitzegger, S., Gruber, T., Brunner, T., Obernberger, I. Short term online corrosion measurements in biomass fired boilers. Part 2: Investigation of the corrosion behavior of three selected superheater steels for two biomass fuels. Fuel Processing Technology. Volume 142, February 2016, Pages 59-70.

External Link Details

The high temperature corrosion behavior of the boiler steels 13CrMo4-5 (1.7335), P91 (1.4903) and 1.4541 has been investigated during short-term test runs (~ 500 h) at a biomass fired grate furnace combined with a drop tube. For the test runs performed with 13CrMo4-5 and P91 chemically untreated wood chips have been used as fuel, whereas waste wood has been used for test runs with P91 and 1.4541. Online corrosion probes and a mass loss probe have been used applying a methodology developed in a previous study to correct for a measurement error occurring during short-term measurements with online corrosion probes (mass loss correction). Furthermore, deposit probe measurements have been performed to evaluate the deposit build-up rate and the chemical composition of deposits. SEM/EDX analyses of the corrosion probes have been performed subsequently to the test runs to gain information regarding the chemical composition and structure of the deposits as well as the corrosion layers.

The furnace has been operated at constant load to ensure constant combustion conditions. The flue gas temperature at the probes has been varied between 740 and 900 °C and the probe surface temperature has been varied between 400 and 560 °C in order to determine their influence on the corrosion rate.

General trends determined by the variation of these temperatures were similar for all boiler steels: the corrosion rate increased with increasing flue gas temperature and also with increasing probe surface temperature. For chemically untreated wood chips combustion at low flue gas temperatures (740 °C) the corrosion rates were comparable for 13CrMo4-5 and P91 at all probe surface temperatures. However, at flue gas temperatures of 800 °C and higher P91 showed better corrosion resistance than 13CrMo4-5. For waste wood combustion 1.4541 generally showed a better corrosion resistance than P91.

The mass loss correction of the measurement error occurring in the initial phase resulted in different errors of 55% for 13CrMo4-5 and 32% for P91 for chemically untreated wood chips. For waste wood the mass loss correction resulted in errors of 55% for P91 and 77% for 1.4541. The results from the mass loss determination for the waste wood test runs scattered stronger compared to the wood chips test runs. Therefore, the fits were not that accurate and the error margin was higher. However, the results outline that the mass loss correction is relevant in order to achieve a meaningful comparison of different short-term test runs using online corrosion probes.

Conference presentations and posters | 2014

Sicherheit bei der Lagerung von Pellets

Emhofer W. Sicherheit bei der Lagerung von Pellets, Highlights der Energieforschung VIII - Erneuerbares Heizen und Kühlen 2014, 11th of July 2014, Vienna, Austria

Details
Peer reviewed papers | 2015

Simultaneous online determination of S, Cl, K, Na, Zn and Pb release from a single particle during biomass combustion Part 1: Experimental setup implementation and evaluation

Sommersacher P, Kienzl N, Brunner T, Obernberger I. Simultaneous online determination of S, Cl, K, Na, Zn and Pb release from a single particle during biomass combustion Part 1: Experimental setup implementation and evaluation. Energy and Fuels. 15 October 2015;29:6734-6746.

External Link Details

The interest in experimental data regarding thermal fuel decomposition as well as the release behavior of ash-forming elements of biomass fuels for modeling and simulation purposes is continuously increasing. On the basis of combustion experiments with lab-scale reactors and single-particle reactors, integral release data regarding ash-forming vapors can be obtained, whereby the release is calculated on the basis of analysis data of the fuel and the ash residues. At the moment, almost no time-resolved release data of ash-forming elements from single particles exist. Therefore, a single-particle reactor was designed, which has been coupled to an inductively coupled plasma mass spectrometer (ICP-MS). This reactor can be used for targeted experiments in a temperature range of 250–1050 °C under inert, reducing, and oxidizing conditions. With this reactor, it is possible to simultaneously determine the surface and center temperatures of a biomass particle, weight loss of the particle, and flue gas composition. The reactor has been coupled to an ICP-MS through a gas stream that is sufficiently diluted with Ar. First performance tests with pure salts (KCl, NaCl, (NH4)2SO4, ZnCl2, and PbCl2) proved that relevant volatile ash-forming elements can be detected with the ICP-MS. For a further validation of the received signals, combustion tests with Miscanthus pellets have been carried out, whereby the controlled interruption of the experiments has also been investigated. These tests prove that with this system the simultaneous time-resolved determination of S, Cl, K, Na, Zn, and Pb is possible whereby the Cl signal can only be used with restrictions. On the basis of the determined release of ash-forming elements for the entire combustion experiment, a quantification/calibration of the measured intensities has been carried out. The data gained from these tests will provide deeper insights into release processes as well as form a relevant basis for release model development.

Peer reviewed papers | 2016

Simultaneous Online Determination of S, Cl, K, Na, Zn, and Pb Release from a Single Particle during Biomass Combustion. Part 2: Results from Test Runs with Spruce and Straw Pellets

Sommersacher P, Kienzl N, Brunner T, Obernberger I. Simultaneous Online Determination of S, Cl, K, Na, Zn, and Pb Release from a Single Particle during Biomass Combustion. Part 2: Results from Test Runs with Spruce and Straw Pellets. Energy and Fuels. 21 April 2016;30(4): 3428-3440.

External Link Details

To gain better insight into inorganic element release processes, test runs with a specially designed single particle reactor connected with an inductively coupled plasma mass spectrometer (ICP-MS) have been performed. Relevant combustion related parameters such as mass loss during thermal degradation, temperature development of the particle (surface and center), and composition of released gases were recorded. By coupling the reactor to an ICP-MS, time-resolved release profiles of relevant aerosol forming elements (S, Cl, K, Na, Zn, and Pb) were determined. Targeted and controlled interruptions of the experiments (quenching) after a certain time were performed to validate reactor performance and reliability of the measurements. Test runs with softwood and straw pellets (8 mm in diameter and about 20 mm in length) were performed at reactor temperatures of 700, 850, and 1000 °C under oxidizing conditions (5.6 or 4.2 vol % O2). These test runs have revealed that the release ratios of volatile and semivolatile ash forming elements (S, Cl, K, Na, Zn, and Pb) generally increase as reactor temperatures rise. Moreover, regarding straw, higher Si and Al contents influence the release behavior of K, Na, Zn, and Pb. For K, existing release mechanisms proposed in the literature have been confirmed, and for Na it has been suggested that release mechanisms similar to K prevail. Especially during the starting phase of the experiment, a distinct temperature gradient exists from the surface to the center of the particle. Thus, different conversion phases occur in parallel in different layers of the particle, which has to be considered during the interpretation of the time-resolved release profiles of the main inorganic elements. Furthermore, transport limitations due to the occurrence of molten phases (especially for straw at reactor temperatures of 1000 °C) were obvious and could be directly derived from the online recorded release profiles. The targeted interruption of the ongoing decomposition process (quenching) provided an indication of the validity of the release profiles for S, K, Na, Zn, and Pb. Additionally, these experiments delivered valuable information regarding possible release mechanisms.

Other papers | 2020

Simultaneous state and fuel property estimation in biomass boilers - theory and practice

Zemann C, Gölles M, Horn M. Simultaneous state and fuel property estimation in biomass boilers - theory and practice. 1st Virtual IFAC World Congress. 2020.

External Link Details

A key factor for the further distribution of biomass boilers in modern energy systems is the capability of changing the applied feedstock during normal plant operation. This is only possible with the application of advanced control strategies that utilize knowledge about the state variables and varying fuel properties. However, neither the state variables nor the fuel properties are measurable during plant operation and, thus, need to be estimated. This contribution presents a method for the simultaneous real-time estimation of the state variables and the fuel properties in fixed-bed biomass boilers which is a novel approach in the field of biomass boilers. The method bases on an Extended Kalman Filter using a nonlinear dynamic model and measurement data from the combustion process. The estimated variables are the masses of dry fuel and water in the fuel bed as well as the fuel's bulk density, water content, chemical composition and lower heating value. The proposed method is easy to implement and requires moderate computational effort which increases the potential of its application at actual biomass boilers. The proposed method is verified with simulation studies and by test runs performed at a representative small-scale fixed-bed biomass boiler. The estimation results show a good agreement with the actual values, demonstrating that the proposed method is capable of accurately estimating the biomass boiler's state variables and simultaneously its fuel properties. For this reason, the presented method is a key technology to ensure the further distribution of biomass boilers in modern energy systems.

Peer reviewed papers | 2020

Simultaneous state and fuel property estimation in biomass boilers - theory and practice

Zemann C, Gölles M, Horn M. Simultaneous state and fuel property estimation in biomass boilers - theory and practice. IFAC-PapersOnLine. 2020;53(2):12763-12770. https://doi.org/10.1016/j.ifacol.2020.12.1920

External Link Details

A key factor for the further distribution of biomass boilers in modern energy systems is the capability of changing the applied feedstock during normal plant operation. This is only possible with the application of advanced control strategies that utilize knowledge about the state variables and varying fuel properties. However, neither the state variables nor the fuel properties are measurable during plant operation and, thus, need to be estimated. This contribution presents a method for the simultaneous real-time estimation of the state variables and the fuel properties in fixed-bed biomass boilers which is a novel approach in the field of biomass boilers. The method bases on an Extended Kalman Filter using a nonlinear dynamic model and measurement data from the combustion process. The estimated variables are the masses of dry fuel and water in the fuel bed as well as the fuel’s bulk density, water content, chemical composition and lower heating value. The proposed method is easy to implement and requires moderate computational effort which increases the potential of its application at actual biomass boilers. The proposed method is verified with simulation studies and by test runs performed at a representative small-scale fixed-bed biomass boiler. The estimation results show a good agreement with the actual values, demonstrating that the proposed method is capable of accurately estimating the biomass boiler’s state variables and simultaneously its fuel properties. For this reason, the presented method is a key technology to ensure the further distribution of biomass boilers in modern energy systems.

Peer reviewed papers | 2019

Single large wood log conversion in a stove: Experiments and modelling

Anca-Couce A, Caposciutti G, Gruber T, Kelz J, Bauer T, Hochenauer C, Scharler R. Single large wood log conversion in a stove: Experiments and modelling. Renewable Energy 2019.143:890-897.

External Link Details

Natural draft wood log stoves for residential bioheat production are very popular due to the low fuel costs, the ecological aspect of a renewable energy source and the visual appeal of the flame. However, they have rather high pollutant emissions, specially of unburnt products. The description of large wood logs conversion in stoves needs to be improved to allow a process optimization which can reduce these emissions. The transient conversion of a single wood log in a stove is experimentally investigated with test runs quenching the log after defined time intervals and measuring the flue gas composition and temperatures in the log and stove. The experiments have been described with a volumetric single particle model, which predicts with good accuracy the log conversion until a time of around 30 min, when pyrolysis is almost ending. At that point, log fragmentation takes place and smaller fragments are detached from the log falling onto the bed of embers. Despite the increase in external surface area, char oxidation takes place at a moderate rate. This last stage of wood log conversion in a stove is the most challenging to model. Finally, preliminary recommendations are provided for reducing CO emissions in wood log stoves.

Peer reviewed papers | 2021

Single Pellet Combustion of Sewage Sludge and Agricultural Residues with a Focus on Phosphorus

Häggström G, Hannl TK, Hedayati A, Kuba M, Skoglund N, Öhman M. Single Pellet Combustion of Sewage Sludge and Agricultural Residues with a Focus on Phosphorus. Energy & Fuels. 8 June 2021.

External Link Details

Recycling of phosphorus in combination with increased utilization of bioenergy can mitigate material and global warming challenges. In addition, co-combustion of different fuels can alleviate ash-related problems in thermal conversion of biomass. The aim of this study is to investigate the ash transformation reactions of mainly P in co-combustion of P-rich sewage sludge (SS) with K-rich sunflower husks (SH) and K- and Si-rich wheat straw (WS). Single pellets of 4 mixtures (10 and 30 wt % SS in WS and 15 and 40 wt % SS in SH) and pure SS were combusted in an electrically heated furnace at process temperatures relevant for fluidized bed combustion (800 and 950 °C). Collected ash fractions were analyzed by inductively coupled plasma techniques, ion chromatography, scanning electron microscopy–energy-dispersive X-ray spectroscopy, and X-ray diffraction. Thermodynamic equilibrium calculations were performed to interpret the results. Over 90% of K and P was found to be captured within the residual ash with 30–70% P in crystalline K-bearing phosphates for mixtures with low amounts of SS (WSS10 and SHS15). The significant share of K and P in the amorphous material could be important for P recovery. For the lower percentage mixtures of SS (WSS10 and SHS15), P in crystalline phases was mainly found in K-whitlockite and CaKPO4. For the higher percentage SS mixtures, most of P was found in whitlockites associated with Fe and Mg, and no crystalline phosphates containing K were detected. For P recovery, co-combustion of the lower SS mixtures is favorable, and they are suggested to be further studied concerning the suitability for plant growth.

Other Publications | 2023

Smart Control of Coupled District Heating Networks

Kaisermayer V, Muschick D, Gölles M, Horn M. Smart Control for Couled District Heating Networks. BEST Center Day. 28 June 2023

Download PDF Details

District heating (DH) networks have the potential for intelligent integration and combination of renewable energy sources, waste heat, thermal energy storage, heat consumers, and coupling with
other sectors. For growing networks in close geographical proximity, often the possibility arises to couple them using bidirectional heat exchangers, possibly unlocking synergies and reducing costs for the consumers. Each DH network may consist of producers, consumers and thermal energy storage (TES) devices. Often, each of the coupled DH networks will be already controlled via low-level controllers. Hence, a high-level control approach is needed, that coordinates the heat exchange between the
networks and takes renewable energy sources and the TES capacities in each network into account. These supervisory controllers are generally referred to as energy management systems (EMS).

Peer reviewed papers | 2022

Smart control of interconnected district heating networks on the example of “100% Renewable District Heating Leibnitz”

Kaisermayer V, Binder J, Muschick D, Beck G, Rosegger W, Horn M, Gölles M, Kelz J, Leusbrock I. Smart control of interconnected district heating networks on the example of “100% Renewable District Heating Leibnitz”. Smart Energy. 2022 Apr 7. 100069. https://doi.org/10.1016/j.segy.2022.100069

External Link Details

District heating (DH) networks have the potential for intelligent integration and combination of renewable energy sources, waste heat, thermal energy storage, heat consumers, and coupling with other sectors. As cities and municipalities grow, so do the corresponding networks. This growth of district heating networks introduces the possibility of interconnecting them with neighbouring networks. Interconnecting formerly separated DH networks can result in many advantages concerning flexibility, overall efficiency, the share of renewable sources, and security of supply. Apart from the problem of hydraulically connecting the networks, the main challenge of interconnected DH systems is the coordination of multiple feed-in points. It can be faced with control concepts for the overall DH system which define optimal operation strategies. This paper presents two control approaches for interconnected DH networks that optimize the supply as well as the demand side to reduce CO2 emissions. On the supply side, an optimization-based energy management system defines operation strategies based on demand forecasts. On the demand side, the operation of consumer substations is influenced in favour of the supply using demand side management. The proposed approaches were tested both in simulation and in a real implementation on the DH network of Leibnitz, Austria. First results show a promising reduction of CO2 emissions by 35% and a fuel cost reduction of 7% due to better utilization of the production capacities of the overall DH system.

Conference presentations and posters | 2019

Smart Logwood Boiler - A holistic approach for improving the efficiency of residential heating systems. 27th European Biomass Conference & Exhibition.

Zemann C, Deutsch M, Zlabinger S, Hofmeister G, Gölles M, Horn M. Smart Logwood Boiler - A holistic approach for improving the efficiency of residential heating systems. 27th European Biomass Conference & Exhibition. Lisbon. 2019. (Oral presentation, 27.05.2019).

Details
Conference presentations and posters | 2019

Smart Logwood Boiler – A holistic approach for improving the efficiency of residential heating systems

Zemann C, Deutsch M, Zlabinger S, Hofmeister G, Gölles M, Horn M. Smart Logwood Boiler – A holistic approach for improving the efficiency of residential heating systems. 27th European Biomass Conference & Exhibition (Oral Presentation). May 2019.

Details
Other Publications | 2023

Smart Microgrid Controller and Microgrid Research Laboratory

Stadler M, Aigenbauer S, Mansoor M, Oberbauer C, Houben N, Liedtke P, Sturmlechner R, Maier C, Alavi F, Haas R. Smart Microgrid Controller and Microgrid Research Laboratory. BEST Center Day. 28 June 2023

Download PDF Details

To ensure that energy is optimally used on site in local energy grids/microgrids and to achieve cost and/or emission reduction targets, the technologies are controlled by predictive and adaptive microgrid controllers. Based on realtime measurement data as well as load, generation, market and weather forecasts, the optimal deployment plan for the local energy grid is thus calculated using mathematical
optimization algorithms. Synergies of different technologies and sectors (electricity, heating, cooling, mobility, etc.) are taken into account, resulting in high energy efficiency in the system.

Other Publications | 2023

Social Sciences and Humanities (SSH) at BEST

Enigl M, Dißauer C, Matschegg D, Sonnleitner A, Strasser C. Social Sciences and Humanities (SSH) at BEST. BEST Center Day. 28 June 2023

Download PDF Details
Conference presentations and posters | 2012

Sofc‐field tests with Biomass gasification derived product gas for the evaluation of stationary BIG‐SOFC‐CHP‐concepts

Martini S. Sofc‐field tests with Biomass gasification derived product gas for the evaluation of stationary BIG‐SOFC‐CHP‐concepts, 5th international Freiberg Conference on IGCC & XtL 2012, 21st-24th of May 2012, Leipzig, Germany. (oral presentation)

Details
Conference presentations and posters | 2012

Sofc‐field tests with Biomass gasification derived product gas for the evaluation of stationary BIG‐SOFC‐CHP‐concepts

Martini S. Sofc‐field tests with Biomass gasification derived product gas for the evaluation of stationary BIG‐SOFC‐CHP‐concepts, 5 th international Freiberg Conference on IGCC & XtL Technologies 2012, 21st-24th of May 2012, Freiberg, Germany.

Details
Other papers | 2020

Soft-Sensor for the on-line estimation of the flue gas mass flow in biomass boilers with additional monitoring of the heat exchanger fouling

Niederwieser H, Zemann C, Gölles M, Reichhartinger M. Soft-Sensor for the On-Line Estimation of the Flue Gas Mass Flow in Biomass Boilers with Additional Monitoring of the Heat Exchanger Fouling. In Proceedings of the 28th European Biomass Conference and Exhibition 2020 (eEUBCE 2020). 2020. p. 280 - 284

Details

The flue gas mass flow is one of the fundamental quantities of the combustion process in biomass boilers. Since it directly relates to the enthalpy flow entering the heat exchanger, its knowledge is highly advantageous for a sophisticated load control of the biomass boiler. It also includes information regarding the primary and secondary air mass flows as well as the mass flows of potentially occurring leakage air and thermally decomposed fuel. However, in practical application it is not possible to obtain a reliable measurement of the flue gas mass flow. For this reason, this work presents a soft-sensor for the on-line estimation of the flue gas mass flow in biomass boilers. The approach is robust against fouling of the relevant boiler components and is based on standard measurements which are typically available in biomass boilers. In addition, the soft-sensor offers the possibility of monitoring the degree of heat exchanger fouling.

Other Publications | 2022

Solar goes Digital: Wie Solarwärme selbstlernende Algorithmen nutzt (Austria Solar Webinar 26)

Unterberger V. Solar goes Digital: Wie Solarwärme selbstlernende Algorithmen nutzt (Austria Solar Webinar 26). Online am 11.05.2022.

External Link Download PDF Details
Peer reviewed papers | 2022

Solid oxide fuel cell operation with biomass gasification product gases: Performance- and carbon deposition risk evaluation via a CFD modelling approach

Pongratz G, Subotić V, Hochenauer C, Scharler R, Anca-Couce A. Solid oxide fuel cell operation with biomass gasification product gases: Performance- and carbon deposition risk evaluation via a CFD modelling approach. 1 April 2022. 244.

External Link Details

Solid oxide fuel cell (SOFC) models used in the past for biomass-to-power plant simulations are limited in their predictability of the carbon deposition risk. In this work, industrial-relevant cell designs were modeled in 2D-CFD considering detailed reaction kinetics which allowed more accurate performance simulations and carbon deposition risk assessments. Via a parametric study, the influence of varying cell operating conditions on the cell performance and carbon deposition risk was quantified when utilizing product gases from steam- and air gasification with varying steam addition. Considering the results from this parameter study and carbon deposition risk assessment, recommendations for promising gasifier-SOFC configurations and cell operating points for stable long-term operation are presented. For smaller-scale biomass-to-power systems, the utilization of product gas from air gasification in anode supported cells with Ni/zirconia-based anode can be recommended, with only moderate steam dilution of the product gas at 750°C cell operating temperature. For larger scales, steam gasification might be meaningful, offering a generally higher electrical efficiency and power output in fuel cells than air gasification. However, a higher risk for carbon deposition could be determined in comparison to air gasification. Hence, a cell temperature of 850°C besides the use of cells with Ni/ceria-based anodes is recommended.

Conference presentations and posters | 2015

Sommersacher P, Kienzl N, Brunner T, Obernberger I

Sommersacher P, Kienzl N, Brunner T, Obernberger I. Online determination of the release of inorganic elements using a single particle reactor coupled with an ICP-MS, 23rd European Biomass Conference 2015, 1st-4th of June 2015, Vienna, Austria. (oral presentation)

Details
Peer reviewed papers | 2017

Sorghum, a sustainable feedstock for biogas production? Impact of climate, variety and harvesting time on maturity and biomass yield

Wannasek L Ortner M Amon B Amon T. Sorghum, a sustainable feedstock for biogas production? Impact of climate, variety and harvesting time on maturity and biomass yield. BIOMASS BIOENERG. 2017; 106: 137-145

External Link Details
Conference presentations and posters | 2019

Spectroscopic in situ methods for the evaluation of the active centers on ash-layered bed materials from gasification in a fluidized bed reactor

Chlebda D, Aziaba K, Janisch D, Kuba M, Hofbauer H, Łojewska J. Spectroscopic in situ methods for the evaluation of the active centers on ash-layered bed materials from gasification in a fluidized bed reactor. ICPS 2019

Details
Other papers | 2017

Startups in Kalifornien – Kollaborationsmodell im Energiebereich

Stadler M., Temper M., Haslinger W. Startups in Kalifornien – Kollaborationsmodell im Energiebereich. Impulsreferat Energy.Inc.Ubator, Start-ups als Katalysator in F&E für marktfähige Energiesystemlösungen. Co-Creation-Workshop. Bundesministerium für Verkehr, Innovation und Technologie. Österreich, 22. September 2017.

Details
Other papers | 2015

State of the art biomass gasification for CHP production – the Ulm plant

Kirnbauer F, Maierhans F, Kuba M, Hofbauer H. State of the art biomass gasification for CHP production – the Ulm plant. Regatec 2015. 7-8 May 2015, Barcelona, Spain.

External Link Details
Other papers | 2017

State of the art dual fluidized bed gasification of biomass in industrial scale

Kuba M, Kirnbauer F, Hofbauer H. State of the art dual fluidized bed gasification of biomass in industrial scale. 5th Central European Biomass Conference (oral presentation). January 2017, Graz, Austria.

Details
Conference presentations and posters | 2012

State-of-the-art and assessment of filter technologies for residential biomass combustion systems

Obernberger I. State-of-the-art and assessment of filter technologies for residential biomass combustion systems, IEA Bioenergy Conference 2012, 13th-15th of November 2012, Vienna, Austria.

Details
Conference presentations and posters | 2009

State-of-the-art and comparison of incineration and gasification of residues and waste

Wilk V, Hofbauer H. State-of-the-art and comparison of incineration and gasification of residues and waste. Junior Scientist Conference 2010, 7th-9th May 2010, Vienna, Austria.

Details

Thermal treatment of residues and waste is an important issue with increasing demand. In this work two pathways of thermal waste treatment, incineration and gasification, are compared. For this purpose literature on both technologies has been reviewed and the state-of-art technology for waste incineration and gasification is presented. The comparison highlights the strengths and weaknesses of both technologies and identifies future potentials.

Other Publications | 2009

State-of-the-art and comparison of incineration and gasification of residues and waste

Wilk, V. State-of-the-art and comparison of incineration and gasification of residues and waste, Doctoral Thesis, Vienna University of Technology, Vienna, Austria, 2009.

Details

More and more waste is generated every year, which has to be disposed. There is a legal obligation to treat waste before it can be landfilled in the European Union. Thus, thermal waste treatment is a very important issue.
In this work two pathways of thermal waste treatment, incineration and gasification, are compared. For this purpose, literature on both technologies has been reviewed and the stateof‐art technology for waste incineration and gasification is presented. The comparison highlights the strengths and weaknesses of both technologies and identifies future potentials. In Europe waste incineration is the state‐of‐the‐art technology ensuring destruction of the pollutants and allowing recovery of the energy content of the waste. A waste incineration plant consists of a furnace, where the waste is incinerated and the chemically bonded energy of the waste is discharged as heat. The hot flue gases pass the heat to the water in the heating surfaces of the steam generator. The energy of the waste can be used for the generation of hot water, steam of electrical power. Then the flue gas has to be cleaned in the air pollution control system. Dust is precipitated, HCl and HF is removed in an acid scrubber and SO2 in an alkaline scrubber. A catalytic reaction destroys dioxins and furans and reduces the emissions of NOx. Due to waste incineration the volume of the residues, which have to be landfilled, is
reduced by 90%. The second pathway of thermal waste treatment is waste gasification, where solid carbonaceous materials are converted into combustible gases by reaction with gasification agents. Due to gas production, not only the energy content of the waste can be recovered but the product range is extended. The producer gas can be converted into heat and power in a conventional steam boiler but also combusted in gas engines or turbines with higher efficiencies. In a combined cycle plant the hot exhaust gas of the turbine can be used in a heat recovery steam generator to increase the efficiency even more. After further cleaning the producer gas is also a suitable feedstock for synthesis of liquid fuels, synthetic natural gas and other chemicals.
Waste gasification processes have been developed in the past, but the plants have been shut down because of economic reasons and/or technical problems. However, important research has been done in the field of biomass gasification and thus gasification technology has been improved markedly. The fluidised bed gasifier in Güssing is one of the most successful examples; this technology is about to be commercialised. Considering these developments, there is definitely interesting potential for waste gasification now and the design of a new waste gasification process based on the findings in biomass gasification will be the scope of future research work.

Conference presentations and posters | 2012

State‐of‐the‐art and assessment of filter technologies for residential biomass combustion systems

Mandl C, Obernberger I, Biedermann F. State‐of‐the‐art and assessment of filter technologies for residential biomass combustion systems, 20th European Biomass Conference 2012, 18th-22nd of June 2012, Milano, Italy. p 732-738.

Details

The objectives of the present study were to: (a) develop an appropriate estimation method for assessing the characteristic ash melting temperatures of different biomass fuels by means of thermodynamic equilibrium calculations (TEC) based on ash analysis data, (b) estimate the correlation between the results obtained from TEC and the experimentally received data for the melting temperatures using a TGA/DSC-method (thermogravimetric analysis/differential scanning calorimetry) and, (c) evaluate the applicability of the TEC and DSC methods as prediction tools for the melting behaviour of biomass ashes in relation to the conventional ash melting test according to DIN 51730. The results are presented for four selected biomass ash samples: straw, miscanthus, beech and bark (spruce). The agreement between the results obtained from TEC and experimental results (TGA/DSC and standard ash melting test) was reasonably good. For comparison between the experimental results and TEC regarding the deformation temperature it is recommended to utilize the temperature range between T15 and T30 estimated by TEC at 15 wt% and 30 wt% molten phase respectively. Differences between calculated melting temperatures T30 for straw (770°C) and bark (1,280°C) on the one side, and experimentally determined data on the other side are lower than 100°C. In the case of miscanthus and beech ash the prediction was with a deviation of around 200°C less precise. Flow temperatures measured as per standard test (DIN 51730) show generally a good agreement with the TEC fusion temperatures at 70 wt% of molten fraction (T70) for straw, miscanthus and bark ash. In case of beech ash is the TEC prediction of T70 (>1,600°C) moved to higher temperatures compared to experimental expected 1,380°C. The results of this study in combination with reliable databases and an appropriate calculation model, qualify the thermodynamic equilibrium calculations as a useful technique for a prediction of the ash melting behaviour including the assessment of characteristic melting temperatures.

Conference presentations and posters | 2012

STATUS and FUTURE of bioSNG in EUROPE

Rauch R. STATUS and FUTURE of bioSNG in EUROPE, IEA Bioenergy Conference 2012, 13th-15th of November 2012, Vienna, Austria.

Details
Conference presentations and posters | 2014

Status fortschrittlicher Biokraftstoffe

Bacovsky D. Status fortschrittlicher Biokraftstoffe, 7. EID Kraftstoff-Forum 2014, 18th-19th of March 2014, Hamburg, Germany

Details
Conference presentations and posters | 2009

Status of BioSNG Production and FT Fuels from Biomass Steam Gasification

Rauch R. Status of BioSNG Production and FT Fuels from Biomass Steam Gasification, 4th BTLtec Biomass to Liquids 2009, 24th-25th of September, 2009 Graz, Austria.

Details
Conference presentations and posters | 2009

Status of Development of Synthetic Biofuels from Biomass in Austria

Rauch R. Status of Development of Synthetic Biofuels from Biomass in Austria, Alternative Propulsion Systems and Energy Carriers 2009, 16th of October 2009, Vienna, Austria.

Details
Peer reviewed papers | 2021

Steam gasification of biomass – Typical gas quality and operational strategies derived from industrial-scale plants

Larsson A, Kuba M, Berdugo Vilches T, Seemann M, Hofbauer H, Thunman H. Steam gasification of biomass – Typical gas quality and operational strategies derived from industrial-scale plants. Fuel Processing Technology. 2021.212:106609.

External Link Details

Steam gasification enables the thermochemical conversion of solid fuels into a medium calorific gas that can be utilized for the synthesis of advanced biofuels, chemicals or for heat and power production. Dual fluidized bed (DFB) gasification is at present the technology applied to realize gasification of biomass in steam environment at large scale. Few large-scale DFB gasifiers exist, and this work presents a compilation and analysis of the data and operational strategies from the six DFB gasifiers in Europe. It is shown that the technology is robust, as similar gas quality can be achieved despite the differences in reactor design and operation strategies. Reference concentrations of both gas components and tar components are provided, and correlations in the data are investigated. In all plants, adjusting the availability and accessibility to the active ash components (K and Ca) was the key to control the gas quality. The gas quality, and in particular the tar content of the gas, can conveniently be assessed by monitored the concentration of CH4 in the produced gas. The data and experience acquired from these plants provide important knowledge for the future development of the steam gasification of biomass.

Conference presentations and posters | 2013

Steam gasification of challenging fuels in the dual fluidized bed gasifier

Wilk V, Hofbauer H. Steam gasification of challenging fuels in the dual fluidized bed gasifier, 21st European Biomass Conference and Exhibition 2013, 3rd-7th of June 2013, Copenhagen, Denmark.

Details

In order to enlarge the range of feedstock for the dual fluidized bed (DFB) gasification process, the influence of several fuel properties was studied in the 100 kW DFB pilot plant. Fuels with high concentration of nitrogen and sulfur, fuels with an increased concentration of fine particles, and fuels with extremely high content of volatiles were tested. The DFB gasification system is found to be robust and can handle all the materials. Nitrogen, sulfur and chlorine from the fuel are predominantly converted in the gasification reactor, either to gases (nitrogen, sulfur) or bound to ash (chlorine, sulfur). For the performance of the DFB gasifier, sufficient contact of fuel, product gas and bed material is important. Increasing amounts of fine particles or volatiles in the fuels lead to higher tar loads in the product gas, because the residence time of fuel particles in bubbling fluidized bed is shorter.

Conference presentations and posters | 2012

Steigerung des Jahreswirkungsgrads von Pelletsheizungen

Schmidl C. Steigerung des Jahreswirkungsgrads von Pelletsheizungen, 12. Industrieforum Pellets 2012, 9th-10th of October 2012, Berlin, Germany.

Details
Books / Bookchapters | 2013

Storage and pre-treatment of substrates for biogas production

Bochmann G, Montgomery L. Storage and pre-treatment of substrates for biogas production. The biogas handbook. ISBN 978 0 85709 498 8 2013:85-103.

External Link Details

Biogas substrates are typically moist, which can make them difficult to store because bacteria and mould can grow on them. Ensiling, which involves the production of acid by lactic acid bacteria, is often used to preserve crops cheaply. Biogas substrates are also often fibrous, which can make them difficult to mix and means that some of their energy is locked up within the fibres. Different pre-treatment technologies are being investigated to access the energy in these fibres, to increase the rate of biogas production and to improve the mixing qualities of the substrates. Pre-treatment technologies are based on three principles: physical (including mechanical shear, heat, pressure and electric fields), chemical (acids, bases and solvents) and biological (microbial and enzymatic). Combinations of these principles are also used, including steam explosion, extrusion and thermo-chemical processes. Although many of these processes have been investigated at small scale, few have been analysed at large scale in un-biased studies. Many of these techniques are associated with high energy input (e.g. mechanical and heat pre-treatment), high equipment costs (e.g. mechanical systems where the blades erode) or use large volumes of chemicals (e.g. alkali pre-treatment). Different pre-treatment technologies work better with different substrates, and more research is required in this field to understand which combinations are worthwhile. This chapter describes some of the common pre-treatment technologies along with some advantages and disadvantages.

Conference presentations and posters | 2012

Strategic Research Priorities for Biomass Technology

Haslinger W. Strategic Research Priorities for Biomass Technology, 4th Annual Meeting of the RHC-platform biomass panel 2012, 10th of October 2012, Berlin, Germany.

Details
Other papers | 2014

Strategy for the application of novel characterization methods for biomass fuels: Case study of straw

Obernberger I. Strategy for the application of novel characterization methods for biomass fuels: Case study of straw. Energy and Fuels. 2014;28(2):1041-52.

External Link Details

Because of an increasing interest in the utilization of new and in terms of combustion-related properties rather unknown biomass fuels in heat and power production, advanced fuel characterization tools are gaining rising interest. Currently, ongoing research and development (R&D) focuses on a better and more precise description of the combustion properties of specific biomass fuels by applying new/advanced analysis methods and modeling tools. These novel characterization methods cover combustion tests in specially designed lab reactors, special fuel indices for biomass fuels, and the dedicated application of high-temperature equilibrium calculations. In this paper, a strategy is presented how the information gained from different advanced fuel characterization methods can be combined to characterize a fuel regarding its combustion behavior in a novel way. By means of this strategy, relevant qualitative and quantitative information regarding the ash-melting behavior, aerosol, SOx, HCl, and NOx emissions to be expected, and high-temperature corrosion risks can be gained. In addition, the approach can also be used for the evaluation of additives and fuel blending as measures to improve specific combustion properties. The results show that a much better and clearer picture about the combustion properties of a specific biomass fuel can be provided than by conventional approaches (such as wet chemical analysis or other standardized methods). The results can be used for the preliminary design of plants as well as for evaluation of the applicability of a specific technology for a certain biomass fuel or fuel spectrum. Moreover, they can be applied in combination with computational fluid dynamics (CFD) simulations for the detailed design and evaluation of furnaces and boilers. © 2014 American Chemical Society.

Conference presentations and posters | 2008

Straw pellets combustion in small-scale boilers. Part 1: Emissions and emission reduction with a novel heat exchanger technology.

Wopienka E, Schwabl M, Emhofer W, Friedl G, Haslinger W, Wörgetter M, Merkl R, Weissinger A. Straw pellets combustion in small-scale boilers. Part 1: Emissions and emission reduction with a novel heat exchanger technology, 16th European Biomass Conference 2008, 2nd-6th of June 2008, Valencia, Spain. p 1386-1392.

Details
Conference presentations and posters | 2008

Straw pellets combustion in small-scale boilers. Part 2: Corrosion and material optimization.

Emhofer W, Wopienka E, Schwabl M, Friedl G. Straw pellets combustion in small-scale boilers. Part 2: Corrosion and material optimization, 16th European Biomass Conference 2008, 2nd-6th of June 2008, Valencia, Spain. p1500-1503.

Details

This paper presents one part of the results of a project dealing with straw pellets combustion in small
scale combustion systems. Whereas the other part of the work investigates gaseous and particulate emissions, this part focuses on the results of experiments to determine corrosion of refractory material. Three different types of straw
pellets are combusted in a prototype of a 15 kW residential heating boiler. The fuel samples are natural wheat straw,
wheat straw with alumina based additive and wheat straw with a mixture of calcium-/magnesium carbonate based
additive. Combustion experiments are performed under different operating conditions of the test boiler. Three
different types of refractory material are used as combustion chamber material. The refractory materials are different
mixtures of alumina, silica, zirconia and silicium-carbide. The degree of deterioration of these materials is
investigated for temperatures between 700 and 1300 deg C in the presence of slag formed during combustion of the
straw samples and the influence of the fuel additives on corrosion effects is analysed.

Conference presentations and posters | 2022

Success Factors and Barriers for Integrated District Heating Networks

Muschick D, Cronbach D, Ianakiev A, Kallert A, Schmidt R-R, Sorknaes P et al. Success Factors and Barriers for Integrated District Heating Networks. 2022. Postersitzung präsentiert bei 2nd International Sustainable Energy Conference , Graz, Österreich.

Details
Conference presentations and posters | 2013

Suitable gasification methods and gas cleaning schemes for BtL application of producer gas

Rauch, R. New processes for fuel conversion, gas cleaning and CO2 separation in FB and EF gasification of coal, biomass and waste, Workshop ” Suitable gasification methods and gas cleaning schemes for BtL application of producer gas” (held during the First International Workshop on New processes for fuel conversion, gas cleaning and CO2 separation in FB and EF gasification of coal, biomass and waste) 12th-14th of June, Prague, Czech, 2013.

Details
Reports | 2021

Supervisory control of large-scale solar thermal systems

Task 55 Towards the Integration of Large SHC Systems into DHC Networks

Gölles M, Unterberger V, Kaisermayer V, Nigitz T, Muschick D. "Supervisory control of large-scale solar thermal systems". IEA SHC FACTSHEET 55.A-D4.1. Date of Publication: 28.01.2021. https://task55.iea-shc.org/fact-sheets

External Link Details

Overview on different approaches for supervisory control strategies,deciding on operating modes and set points for the controls of the different plants and componentsintegrated in solar thermal systems.

Peer reviewed papers | 2020

Surface characterization of ash-layered olivine from fluidized bed biomass gasification

Kuba M, Fürsatz K, Janisch D, Aziaba K, Chlebda D, Łojewska J, Forsberg F, Umeki K, Hofbauer H. Surface characterization of ash-layered olivine from fluidized bed biomass gasification. Biomass Conversion and Biorefinery. 2020

External Link Details

The present study aims to present a comprehensive characterization of the surface of ash-layered olivine bed particles from dual fluidized bed gasification. It is well known from operation experience at industrial gasification plants that the bed material is activated during operation concerning its positive influence on gasification reactions. This is due to the built up of ash layers on the bed material particles; however, the chemical mechanisms are not well understood yet. Olivine samples from long-term operation in an industrial-scale gasification plant were investigated in comparison to fresh unused olivine. Changes of the surface morphology due to Ca-enrichment showed a significant increase of their surface area. Furthermore, the Ca-enrichment on the ash layer surface was distinctively associated to CaO being present. The presence of CaO on the surface was proven by adsorption tests of carbon monoxide as model compound. The detailed characterization contributes to a deeper understanding of the surface properties of ash layers and forms the basis for further investigations into their influence on gasification reactions.

Other Publications | 2015

Survey of modern pellet boilers in Austria and Germany - System design and customer satisfaction of residential installations

Büchner D, Schraube C, Carlon E, von Sonntag J, Schwarz M, Verma VK, Ortwein A. Survey of modern pellet boilers in Austria and Germany - System design and customer satisfaction of residential installations. Applied Energy;160: 390-403.

External Link Details

The variety of available technical building equipment leads to increasingly complex heating systems with various requirements for efficient operation. Furthermore, in existing buildings the heating system is often historically evolved and contains parts having different ages. Those systems have limited capacity to suit the requirements of replaced components. This paper investigates the operational behavior of small-scale pellet heating systems in Austria and Germany, considering installations in new buildings and boiler replacements in existing buildings and how they are influencing the customer satisfaction.

This investigation was carried out by means of a comprehensive survey for residential customers using pellet fired heating systems. More than 2500 questionnaires were distributed between 2011 and 2013 in Austria, Germany, Greece, Spain and the United Kingdom. In total 293 returned questionnaires were evaluated. The efficiency of the monitored heating systems was estimated using surveyed boiler parameters. Successively, the influence of different operational parameters on the boilers efficiency was evaluated with a statistical analysis, using Pearson correlation coefficient and Spearman correlation.

Results showed that the correct installation of the monitored pellet heating system is easier for new buildings compared to the replacement of old fossil boilers in existing buildings. Optimal operating conditions are characterized by less frequent ignitions and by higher operational loads. Pellet systems operated with a high efficiency in both building types, but for new buildings it is more likely to occur. More than 87% of the participating customers stated that they are highly satisfied with their pellet boiler.

Peer reviewed papers | 2023

SWOT Analysis of Non-Technical and Technical Measures towards “(Nearly) Zero-Emission Stove Technologies”

Reichert G, Schmidl C. SWOT Analysis of Non-Technical and Technical Measures towards “(Nearly) Zero-Emission Stove Technologies”. Energies. February 2023.16,3,1388.

External Link Details

Firewood stoves are widespread and popular for renewable heat supply in Europe. Several new technological measures have been developed recently that aim at improving the appliance performance in terms of emissions and efficiency. In order to support the trend towards “(nearly) zero-emissions technologies”, the objective of this study was to provide a profound overview of the most relevant technical primary and secondary measures for emission reduction and to analyze their functionality, the relevant framework conditions for their application and their costs. Since user behavior is essential for emission and efficiency performance, the state of knowledge about user behavior is summarized and the latest measures for its optimization are evaluated as non-technical primary measures. Primary and secondary measures were analyzed separately, but also potentially promising combinations of primary and secondary optimization were evaluated using SWOT analysis. The results showed that complementary application of primary and secondary measures will be necessary in order to achieve “(nearly) zero-emission technologies”. The paper is useful for manufacturers and provides them with guidance and recommendations for future developments. They can specifically select appropriate measures for their products and applications not only based on technical aspects, but also with a strong focus on user behavior and user comfort.

PhD Thesis | 2019

Synchronization of product gas generation and its utilization in industrial dual fluidized bed gasification plants

Nigitz T, Gölles M, Aichernig C, Hofbauer H, Horn, M. Synchronization of the gas production and utilization rates of a solid-to-gas process and a downstream gas-to-X process. 21. Styrian Workshop on Automatic Control. 10 September 2019. Leitring/Wagna, Austria. (oral presentation)

Details
Conference presentations and posters | 2014

Synergies of Wastewater and Microalgae Cultivation

Sonnleitner A, Bacovsky D, Bochmann G, Drosg B, Schagerl M. Synergies of Wastewater and Microalgae Cultivation, Word Sustainable Energy Days next 2014, 26th-28th of February 2014, Wels, Austria.

Details

Current international research results identify microalgae as a new and promising feedstock for the global energy supply chain. A novel concept to reduce costs and cover the need of water and nutrients is the combination of wastewater treatment and microalgae cultivation. In Austria in particular brewery and dairy effluents as well as municipal wastewater would be suitable for algae cultivation. Cultivation systems practical for the use of wastewater are High Rate Algal Ponds (open system, suspended culture), Algal Turf Scrubbers (open system, immobilized culture) and Photobioreactors (closed systems, suspended culture). The cultivation of microalgae in general and the special case of wastewater as nutrient source face a variety of challenges either concerning the accumulation of microalgal cells in wastewater (upstream process) or their removal and processing (downstream process). Taking a look at the whole production chain shows that for effluents of breweries, dairies
and smale-scale municipal wastewater no feasible concept for the combination of microalgae cultivation and wastewater treatment can be designed. A promising production concept for large-scale municipal wastewater treatment plants are HRAPs or biofilm production in ATS systems for energetic and material pathways. Various R&D challenges are to overcome to lead to an optimization and further development of technologies for combined wastewater treatment and microalgae cultivation in Austria.

Conference presentations and posters | 2013

Synthetic biofuels – do they have a future?

Rauch R. Synthetic biofuels – do they have a future? 8th A3PS Conference Eco-Mobility 2013, 4th of October 2013, Vienna, Austria.

Details
Peer reviewed papers | 2023

Synthetic oxygen carrier C28 compared to natural ores for chemical looping combustion with solid fuels in 80 kWth pilot plant experiments

Fleiss B, Priscak J, Fuchs J, Müller S, Hofbauer H. Synthetic oxygen carrier C28 compared to natural ores for chemical looping combustion with solid fuels in 80 kWth pilot plant experiments. Fuel. 15 February 2023. 334.

External Link Details

Chemical Looping Combustion (CLC) is a highly efficient CO2 separation technology with no direct contact between combustion air and fuel. A metal oxide is used as oxygen carrier (OC) in a dual fluidized bed to generate clean CO2. The use of solid fuels, especially biomass, is the focus of current research, because of the possibility of “negative” CO2-emissions. The OC is a key component, because it must meet special requirements for solid fuels, which are different to gaseous fuels. Most frequently naturals ores or synthetic materials are used as OC. Synthetic OC are characterised by higher reactivity at the expense of higher costs. For this reason, so far not so many experiments have been conducted on a larger scale with synthetic OC on solid CLC. This work deals with the synthetic perovskite C28 and investigating the suitability as oxygen carrier in an 80 kWth pilot plant for chemical looping combustion with biogenic fuels. The experiments show a significantly increased combustion efficiency of 99.6 % compared to natural ores and a major influence of the solid circulation rate on general performance, whereby carbon capture rates up to 98.3 % were reached. Furthermore, the role of the fuel reactor's counter-current flow column and its impact on better gas conversion was investigated. C28 suffered no deactivation or degradation over the experimental time, but first traces of ash layer formation, phase shifting and attrition of fines could be detected. The focus of further research should lie on long-term stability and reactivity for their high impact on the economic scale up of C28.

Conference presentations and posters | 2012

System performance of a storage integrated pellet boiler

Aigenbauer S, Hartl M, Malenkovic I, Simetzberger A, Vverma VK, Schmidl C. System performance of a storage integrated pellet boiler, 20th European Biomass Conference 2012, 18th-22nd of June 2012, Milano, Italy. p 1320-1324.

Details

A pellet burner directly integrated into the solar storage provides heat and domestic hot water for small
residential applications in an environment-friendly way. The objective of this work was to evaluate the system
performance of a storage integrated pellet boiler in laboratory under transient test conditions. Furthermore, the type
test results according to ÖNORM EN 303-5 [1] of the last decade were compared with monitoring data of systems
with separated boiler and heat storage. The laboratory tests allowed finding relevant parameters and losses, which
influence the system performance. A developed computer simulation model shows the potential to optimize the
performance of the investigated boiler.

Peer reviewed papers | 2018

Tackling ammonia inhibition for efficient biogas production from chicken manure: Status and technical trends in Europe and China

Fuchs W, Wang X, Gabauer W, Ortner M, Li Z. Tackling ammonia inhibition for efficient biogas production from chicken manure: Status and technical trends in Europe and China (Review). Renewable and Sustainable Energy Reviews 2018;97:186-199.

External Link Details

The increased global consumption of chicken products has resulted in the generation of huge amounts of manure. Numerous studies emphasized the large potential of this waste as an untapped source of renewable energy through anaerobic digestion (AD). However, intrinsic difficulties, in particular the high N content, induce instable process conditions, including the accumulation of intermediates, and foaming, which reduces methane yields. Such issues limit the widespread application of this energy-rich substrate for biogas production. The process inhibition by ammonia is usually prevented by reducing the concentration of chicken manure through dilution or by operating the plant considerably below its theoretical reactor capacity. However, this process compromises process efficiency, thereby increasing capital investments and operational costs. Another option to achieve optimal process performance is co-digestion with less N-rich materials. However, co-digestion also has its limitations due to the frequent unavailability of sufficient amounts of C-rich substrates. A series of promising technical solutions have been developed to overcome the aforementioned bottlenecks. Examples include stripping or membrane extraction as means to reduce ammonia concentration in the fermenter. Several full-scale plants employing ammonia removal techniques have been installed recently. Latest research also investigated the use of additives, such as zeolites and trace elements, as well as bioaugmentation, to mitigate ammonia inhibition. The current study reviews the state of technology as well as recent achievements and perspectives. It provides an overview of the different approaches to remove ammonia from AD-process and presents practical examples from China and Europe.

Reports | 2021

Tailoring of the pore structures of wood pyrolysis chars for potential use in energy storage applications

Maziarka P, Sommersacher P, Wang X, Kienzl N, Retschitzegger S, Prins W, Hedin N, Ronsse F. Tailoring of the pore structures of wood pyrolysis chars for potential use in energy storage applications. Applied Energy.2021.286:116431. https://doi.org/10.1016/j.apenergy.2020.116431

External Link Details

Char obtained from biomass pyrolysis is an eco-friendly porous carbon, which has potential use as a material for electrodes in supercapacitors. For that application, a high microporous specific surface area (SSA) is desired, as it relates to the accessible surface for an applied electrolyte. Currently, the incomplete understanding of the relation between porosity development and production parameters hinders the production of tailor-made, bio-based pyrochars for use as electrodes. Additionally, there is a problem with the low reliability in assessing textual properties for bio-based pyrochars by gas adsorption. To address the aforementioned problems, beech wood cylinders of two different lengths, with and without pre-treatment with citric acid were pyrolysed at temperatures of 300–900 °C and analysed by gas adsorption. The pyrolyzed chars were characterised with adsorption with N2 and CO2 to assess the influence of production parameters on the textual properties. The new approach in processing the gas adsorption data used in this study demonstrated the required consistency in assessing the micro- and mesoporosity. The SSA of the chars rose monotonically in the investigated range of pyrolysis temperatures. The pre-treatment with citric acid led to an enhanced SSA, and the length of the cylinders correlated with a reduced SSA. With pyrolysis at 900 °C, the micro-SSAs of samples with 10 mm increased by on average 717 ± 32 m2/g. The trends among the investigated parameters and the textual properties were rationalized and provide a sound basis for further studies of tailor-made bio-based pyrochars as electrode materials in supercapacitors.

Conference presentations and posters | 2010

Tapping the energy contained in waste for renewable energy provision - example of Austria

Ragossnig A. Tapping the energy contained in waste for renewable energy provision - example of Austria, International Work-Shop ENERGY & FUELS FROM WASTE & BIOMASS 2010, 5th of January 2010, Pucon, Chile.

Details
Conference presentations and posters | 2009

Tar Content and Composition in Producer Gas of Fluidized Bed Gasification and Low Temperature Pyrolysis of Straw and Wood – Influence of Temperature

Aigner I, Wolfesberger U, Hofbauer H. Tar Content and Composition in Producer Gas of Fluidized Bed Gasification and Low Temperature Pyrolysis of Straw and Wood – Influence of Temperature, ICPS 2009, 1st-3rd of September 2009, Vienna, Austria.

Details

The global warming, the increasing CO2 emission, the combustion of and dependency on fossil
fuels, as well as the high-energy price have resulted in an increasing demand in renewable energy
sources. Biomass, as a renewable energy source, has the potential to contribute to the future energy
mix in various ways. In thermo-chemical biomass conversion processes, especially gasification and pyrolysis, the tar content and its composition is a major subject. Due to the various processes examined at VUT, this
work picks up the opportunity to compare the different tar amounts and compositions at different
temperatures and process parameters. The tar content and composition in the producer gas of steam
gasification of straw and wood as well as the tar yields of low temperature pyrolysis of straw are
displayed in the following work. Gasification experiments were carried out in a 100 kW dual fluidized bed steam gasifier at a temperature range of 700° C to 870° C. Pyrolysis experiments were conducted in a rotary kiln
reactor at temperatures between 600° C and 630° C. For better understanding of tar formation during thermo-chemical conversion of biomass the tar content and composition in the producer gas was analyzed with a gas chromatograph coupled with a mass spectrometer. Main observation was that at higher temperatures the tar composition is shifted to higher molecular tars as poly aromatic hydrocarbons (PAH). Key tar components at lower temperatures (pyrolysis) are phenols. These results give the opportunity to analyse tar formation in different thermochemical conversion steps, therefore, for the future a better understanding of tar formation in large scale facility’s should be gained. This means lower tar content in the producer gas for gasification processes and an achievement of required pyrolysis oil yields for pyrolysis.

Other papers | 2009

Tar content and composition in producer gas of fluidized bed gasification of wood - influence of temperature and pressure

Wolfesberger U, Aigner I, Hofbauer H. Tar content and composition in producer gas of fluidized bed gasification of wood-influence of temperature and pressure. Environmental Progress and Sustainable Energy. 2009;28(3):372-9.

External Link Details
Peer reviewed papers | 2024

Tar conversion and recombination in steam gasification of biogenic residues: The influence of a countercurrent flow column in pilot- and demonstration-scale

Huber M, Benedikt F, Karel T, Binder M, Hochstöger D, Egger A, Fürsatz K, Kuba M. Tar conversion and recombination in steam gasification of biogenic residues: The influence of a countercurrent flow column in pilot- and demonstration-scale. Fuel. 15 May 2024. 364:131068

External Link Details

First experiments with biogenic residues and a plastic-rich rejects and woody biomass blend were conducted in an advanced 1 MW dual fluidized bed steam gasification demonstration plant at the Syngas Platform Vienna. Wood chips, bark, forest residues, and the plastic-rich rejects and woody biomass blend were tested and the tar composition was analyzed upstream and downstream of the upper gasification reactor, which is designed as a high-temperature column with countercurrent flow of catalytic material. Each feedstock was gasified with olivine as bed material in demonstration scale and is compared to the gasification of softwood pellets with olivine and limestone in pilot scale. A reduction in tar content was observed after countercurrent column for all feedstocks. However, a shift in tar species occurred. While styrene, phenol, and 1H-indene were predominant upstream, naphthalene and polycyclic aromatic hydrocarbons (PAHs) were the prevailing tar species downstream the countercurrent column. Hence, an increase of i.e. anthracene, fluoranthene, and pyrene from the upstream concentration was observed. For pyrene, up to twice the initial concentration was measured. This recombination to PAHs was observed for all feedstocks in demonstration- and pilot-scale. The only exception occurred with limestone as bed material, characterized by a higher catalytic activity in comparison to the typically used olivine. In the perspective of the integrated product gas cleaning, tar with higher temperature of condensation are separated more efficiently in the installed scrubbing unit. Hence, the recombination facilitates an overall decline of tar content after the gas cleaning.

Books / Bookchapters | 2020

Technische Optionen für die Umrüstung und Nachrüstung von Industrien mit Bioenergie

Rutz D, Janssen R, Reumerman P, Spekreijse J, Matschegg D, Bacovsky D, et al. Technische Optionen für die Umrüstung und Nachrüstung von Industrien mit Bioenergie. WIP Renewable Energies.2020

External Link Details
Peer reviewed papers | 2017

Techno-economic assessment of hydrogen production based on dual fluidized bed biomass steam gasification, biogas steam reforming, and alkaline water electrolysis processes

Yao J, Kraussler M, Benedikt F, Hofbauer H. Techno-economic assessment of hydrogen production based on dual fluidized bed biomass steam gasification, biogas steam reforming, and alkaline water electrolysis processes. Energy Conversion and Management. 1 August 2017;145: 278-292.

External Link Details
Other Publications | 2022

Techno-economic assessment of wood-based processes with feedstock price scenarios in Austria

Fuhrmann M, Dißauer Ch, Strasser Ch, Schmid E. Techno-economic assessment of wood-based processes with feedstock price scenarios in Austria. Austrian Journal of Agricultural Economics and Rural Studies.31.15

Download PDF Details

Woody biomass is a raw material and cost factor for a range of industries in Austria. The aim of this article is to assess impacts of price developments on operating costs of particleboard, combined heat and power (CHP) and synthetic natural gas (BioSNG) production. Three price scenarios have been developed for pulpwood, industrial wood chips and forest wood chips for the period 2021 - 2026. Results show that the share of raw material costs on total operating costs ranges between 24 - 64% for particleboard, 45 - 82% for CHP, and 24 - 63% for BioSNG production.

Conference presentations and posters | 2020

Techno-economic modelling of bioeconomy value chains

Fuhrmann Marilene

Dißauer C, Fuhrmann M, Strasser C, Enigl M, Matschegg D. Techno-economic modelling of bioeconomy value chains. 6th Central European Biomass Conference. 2020. Graz.

Download PDF Details

In the context of Austria´s and the EU´s ambitious goals to combat climate change by reducing the demand for fossil fuels in all sectors, many industries plan to increase the share of renewable energy in their production processes. Furthermore greenhouse gases shall be reduced by 36 % until 2030 (compared to 2005), which means another 14 Mio. tons CO2eq will have to be reduced per year in comparison to data from 2016. In doing so, some industries find it sufficient to use green electricity or green gas from the grid, but for some industries the use of biomass is particularly interesting. In particular, the wood-based economy as an essential part of the Austrian bio-based economy is needed to promote the development of sustainable production and sustainable energy generation. Besides the increasing demand for woody biomass, the supply side will also undergo substantial changes since increasing calamities (such as bark beetle infestation and windthrow) caused by climate change will affect the wood supply to a varying extend. Hence, within the project “BioEcon” the BIOENERGY 2020+ team together with industry partners analyses the effects of these developments on the wood-based economy and the corresponding supply chains in terms of economic and technological perspectives including econometric models to evaluate woody biomass supply and demand.
 

Peer reviewed papers | 2021

Techno-economic optimization of islanded microgrids considering intra-hour variability

Mathiesen P, Stadler M, Kleissl J, Pecenak Z. Techno-economic optimization of islanded microgrids considering intra-hour variability. Applied Energy. 2021.304:117777.

External Link Details

The intra-hour intermittency of solar energy and demand introduce significant design challenges for microgrids. To avoid costly energy shortfalls and mitigate outage probability, islanded microgrids must be designed with sufficient distributed energy resources (DER) to meet demand and fulfill the energy and power balance. To avoid excessive runtime, current design tools typically only utilize hourly data. As such, the variable nature of solar and demand is often overlooked. Thus, DER designed based on hourly data may result in significant energy shortfalls when deployed in real-world conditions. This research introduces a new, fast method for optimizing DER investments and performing dispatch planning to consider intra-hour variability. A novel set of constraints which operate on intra-hour data are implemented in a mixed-integer-linear-program microgrid investment optimization. Variability is represented by the single worst-case intra-hour fluctuation. This allows for fast optimization times compared to other approaches tested. Applied to a residential microgrid case study with 5-minute intra-hour resolution, this new method is shown to maintain optimality within 2% and reduce runtime by 98.2% compared to full-scale-optimizations which consider every time-step explicitly. Applicable to a variety of technologies and demand types, this method provides a general framework for incorporating intra-hour variability into microgrid design.

Peer reviewed papers | 2014

Techno-economic study of a heat pump enhanced flue gas heat recovery for biomass boilers

Hebenstreit B, Schnetzinger R, Ohnmacht R, Höftberger E, Lundgren J, Haslinger W, et al. Techno-economic study of a heat pump enhanced flue gas heat recovery for biomass boilers. Biomass Bioenergy. 2014;71:12-22.

External Link Details

An active condensation system for the heat recovery of biomass boilers is evaluated. The active condensation system utilizes the flue gas enthalpy exiting the boiler by combining a quench and a compression heat pump. The system is modelled by mass and energy balances. This study evaluates the operating costs, primary energy efficiency and greenhouse gas emissions on an Austrian data basis for four test cases. Two pellet boilers (10kW and 100kW) and two wood chip boilers (100kW and 10MW) are considered. The economic analysis shows a decrease in operating costs between 2% and 13%. Meanwhile the primary energy efficiency is increased by 3-21%. The greenhouse gas emissions in CO2 equivalents are calculated to 15.3-27.9kg MWh-1 based on an Austrian electricity mix. The payback time is evaluated on a net present value (NPV) method, showing a payback time of 2-12 years for the 10MW wood chip test case. © 2014 Elsevier Ltd.

Reports | 2019

Technological expertise for biomass-based heat, power and transport fuels

Bacovsky D. Technological expertise for biomass-based heat, power and transport fuels. Bioenergy in Austria. October 2019.

External Link Details
Other papers | 2022

Technology and Process Improvement of a Demonstration Unit for a Novel Aqueous Phase Reforming Process Via Virtual Commissioning

Nigitz T, Arlt S, Poms U, Weber G, Luisser M, Gölles M. Technology and Process Improvement of a Demonstration Unit for a Novel Aqueous Phase Reforming Process Via Virtual Commissioning. Proceedings of the 30th European Biomass Conference and Exhibition. 2022. 948 - 950.

External Link Details

A process demonstration unit for a novel aqueous phase reforming (APR) process was built and scaled up by factor 666. The set-up of this demonstration unit was supported by virtual commissioning using a virtual test bed. By using virtual commissioning, it was possible to speed-up the commissioning and to support stable, reliable and continuous plant operation for 100h.

Conference presentations and posters | 2019

Technology mapping of market-available small-scale combustion appliances

Feldmeier S, Wopienka E, Schwarz M, Pfeifer C. Technology mapping of market-available small-scale combustion appliances. 27th European Biomass Conference & Exhibition (Poster). 2019.

External Link Details

A broad range of different biomass combustion appliances dedicated to domestic heating is available on the market. Depending on the technology the impact of varying properties of biomass fuels on slag formation and emission release may vary. Aspects as the design of the grate section and the selection of individual boiler components as well as operational settings determine the applicability of biomass fuels. Apart from fuel properties also the fuel load on the grate, residence time, air distribution and geometry of grate and combustion chamber affect the degree of slag formation and emission release. Technology indexes determined by means of constructional measures enable a systematic comparison and – in a further step – an assessment of combustion appliances. In this work specific technology indexes were specified and applied to compare technological aspects, which will prospectively allow investigating the technological influence on the combustion performance.

Reports | 2016

Technology Overview

Strasser C. Technology Overview. New York State Wood Heat Report: An Energy, Environmental, and Market Assessment - Final Report. April 2016. Chapter 8; 141-206.

Details
Reports | 2020

Test Report - Lean Gas Test Simulated lean gas in the laboratory

Stressler H, Aigenbauer S. Test Report - Lean Gas Test: Simulated lean gas in the laboratory. Projektbericht. February 2020.

External Link Details
Reports | 2020

Test Report - Lean Gas Test: Operation of a Stirling engine with biogas

Stressler H, Aigenbauer S. Test Report - Lean Gas Test: Operation of a Stirling engine with biogas. Projektbericht. February 2020.

External Link Details
Reports | 2020

Test Report - Lean Gas Test: Operation of a Stirling engine with landfill gas

Stressler H, Aigenbauer S. Test Report - Lean Gas Test: Operation of a Stirling engine with landfill gas. Projektbericht. February 2020

External Link Details
Reports | 2020

Test Report - Lean Gas Test: Operation of a Stirling engine with sewage gas

Stressler H, Aigenbauer S. Test Report - Lean Gas Test: Operation of a Stirling engine with sewage gas. Projektbericht. February 2020

External Link Details
Conference presentations and posters | 2012

The actual need of a guideline for sampling and analysis of chemical matter (not tars) from product gas, pyrolysis gas and synthesis gas

Zeisler J, Kleinhappl M, Martini S, Neubauer Y. The actual need of a guideline for sampling and analysis of chemical matter (not tars) from product gas, pyrolysis gas and synthesis gas, 20th European Biomass Conference 2012, 18th-22nd of June 2012, Milano, Italy. p 919-925.

Details

Due to the increasing number of different online and offline methods and procedures for sampling at gasification and pyrolysis plants a comparison of the measured values is difficult. About the sampling of tars already a number of detailed guidelines and a common approach are established [2]. In terms of discrete chemical impurities the missing of a guideline for sampling at biomass¬ plants is an obstacle for implementing sampling systems in new plants or experimental assemblies. Nevertheless the knowledge is available at several institutions but it has to be collected. Within this paper the basic challenges of sampling are mentioned, the system at Bioenergy2020+ is explained in detail and about the parameters NH3, H2S & HCN useful results of optimisation are reported. This status should help to point out the need of a reliable library of methods. According the first systematisation of offline and online sampling respectively detection a table of application is proposed. The detailed knowledge for this will be treated and exchanged within an established working group which should lead to a guideline (at least methods library) for sampling of trace components as described.

Peer reviewed papers | 2015

The behavior of biomass and char particles in a dual fluidized bed gasification system

Kraft S, Kuba M, Hofbauer H. The behavior of biomass and char particles in a dual fluidized bed gasification system. Powder Technology 2018;338:887-897.

External Link Details
Biomass gasification in fluidized beds is a complex process in which particles occur in a wide range of size and density. In this paper, the mixing behavior of the char, biomass and bed material in a gasification reactor of a typical dual fluidized bed (DFB) system was investigated in a cold flow model. Experiments with ternary mixtures were performed in which the size and the density of the used particles were varied. For the experiments, a cold flow model was constructed with a full bed material recirculation loop, similar to DFB systems. Experiments revealed that at low fluidization velocities, the smaller char particles and biomass particles occur more preferentially in the bed material recirculation stream. If the fluidization velocities are increased, this tendency diminishes. Furthermore, the experiments showed that the mass fraction of biomass particles in the recirculation stream is always higher than that of the lighter char particles. It is also shown that the current design of the gasification reactor in DFB systems is not optimal. A way to overcome this issue in existing plants is presented.
Other papers | 2014

The Biomass Technology Roadmap of the RHC-Platform: Priorities for high efficient large-scale CHP units

Grammelis P, Goodwin N, Alakangas E, Haslinger W, Karampinis E. The Biomass Technology Roadmap of the RHC-Platform: Priorities for high efficient large-scale CHP units. VGB PowerTech. 2014;6:74-79.

Details

Die europäische Technologie-Plattform für Heizen und Kühlen mit erneuerbaren Energien (RHC-Plattform, www.rhc-platform.org) fördert die Forschung und Entwicklung bei der Wärme- und Kälteproduktion aus erneuerbaren Energiequellen in der EU. Die verschiedenen Endanwendungen (Strom und/oder Bereitstellung von Wärme, Kraftstoff) setzen eine Verdoppelung der Biomassenutzung voraus, um die 20-20-20-Ziele der EU zu erreichen. Neue Ressourcen müssen erschlossen, mobilisiert und der Wirkungsgrad der Umwandlungsprozesse gesteigert werden. In Biomasse-Heizkraftwerken sowie Heizwerken werden derzeit mehr als ein Drittel des gesamten Biomasseaufkommens eingesetzt. Dies führt zu neuen, gemeinsamen Herausforderungen für den Strom- und Wärmesektor.
Das Biomasse-Panel der RHC-Plattform hat Schwerpunkte für Forschung und Entwicklung definiert, um bestimmte Kennzahlen für Biomassewertschöpfungsketten zu erreichen. Der vorliegende Beitrag stellt die Prioritäten für die Bestandteile der Wertschöpfungsketten vor, die relevant für den Strombereich sind:
a) nachhaltige und kosten-effiziente Biomasseversorgungsketten, b) thermisch behandelte Biomasse-Brennstoffe und c) hoch-effiziente KWK-Anlagen.
Herausforderungen für den Anlagenbetrieb sind Brennstoffflexibilität, Wirkungsgraderhöhung über den vollen Lastbereich, Betrieb mit variablen Brennstoffen und Qualitäten bei variablen Lastzuständen, höhere Betriebsparameter für Dampf und andere Wärmeträger, höhere Anlagenverfügbarkeit, Reduktion von unerwünschten gas- und partikelförmigen Emissionen und schließlich die Ascheverwertung.
 

Conference presentations and posters | 2020

The Contribution of advanced renewable transport fuels to transport decarbonisation in 2030 and beyond

Bacovsky D, Laurikko J. The Contribution of advanced renewable transport fuels to transport decarbonisation in 2030 and beyond. 28th European Biomass Conference and Exhibition (oral presentation) 2020.

Details

In the light of climate change, there is an urgent need to decarbonize our societies. The transport sector is specifically challenging, as transport demand is still growing, and so are the sector´s GHG emissions. Several countries have set ambitious national targets for GHG reduction in the transport sector. These are often backed with policy measures for implementation of both advanced renewable transport fuels and electrification.
In a project set up jointly by two Technology Collaboration Programmes of the International Energy Agency, namely the IEA Bioenergy TCP and the Advanced Motor Fuels TCP, the contribution that advanced renewable transport fuels should make to the decarbonisation of the transport sector is assessed by means of country-specific assessments.

Peer reviewed papers | 2022

The effect of the presence of water on sulfur removal capacity during H2S removal from syngas using ZnO adsorbent

Dogan C, Martini S, Rets hitzegger S, Cetin B. The effect of the presence of water on sulfur removal capacity during H2S removal from syngas using ZnO adsorbent. Environmental Technology. 15 May 2022.

External Link Details

Compared to extensive studies on affecting parameters in sulfur removal with ZnO adsorbents from coal gasification syngas, similar studies conducted for biomass gasification syngas (BGS) are quite rare. Thus, considering the BGSs with high water content, this study was performed to investigate the effect of H2O presence in syngas on sulfur removal capacity (SRC) of ZnO adsorbents. Initially, the effect of gas composition and temperature on SRC in binary gas mixture was investigated. While H2O decreased the SRC, as expected, the highest reduction in the capacity occurred in the CO–H2S gas mixture due to observed COS formation. Second, the SRCs and resulting COS formation were compared for synthetic syngas mixtures having different water contents and for different amounts of adsorbents. Finally, the separate and combined effects of temperature and H2O on SRC and COS formation in synthetic syngas were investigated by comparing SRCs of typical syngas under wet and dry conditions. The results showed that increasing the amount of adsorbent and temperature results in higher SRC due to a reduction in COS formation through the reactions of COS with H2 and H2O. This indicates that it is critical to control the residence time of syngas and temperature to reduce COS formation during ZnO adsorption.

Peer reviewed papers | 2020

The effect of the reaction equilibrium on the kinetics of gas-solid reactions — A non-parametric modeling study.

Birkelbach F, Deutsch M, Werner A. The effect of the reaction equilibrium on the kinetics of gas-solid reactions — A non-parametric modeling study. Renewable Energy 2020.152:300-307.

External Link Details

The viability of thermochemical energy storage for a given application is often determined by the reaction kinetics under process conditions. For high exergetic efficiency the process needs to operate in close proximity to the reaction equilibrium. Thus, accurate kinetic models that include the effect of the reaction equilibrium are required.

In the present work, different parametrization methods for the equilibrium term in the General Kinetic Equation are evaluated by modeling the kinetics of two reaction systems relevant for thermochemical energy storage (CaC2O4 and CuO) from experimental data. A non-parametric modeling method based on tensor decompositions is used that allows for a purely data driven assessment of different parametrization methods.

Our analysis shows that including a suitable equilibrium term is crucial. Omitting the equilibrium term when modeling formation reactions can lead to seemingly negative activation energies. Our tests also show that for formation reactions, the reaction rate decreases much faster towards the equilibrium than theory predicts. We present an empirical modeling approach that can predict the reaction rate of gas-solid reactions, regardless of the shortcomings of theory. In this way, non-parametric modeling offers a powerful tool for applied research and may contribute to the advancement of the thermochemical energy storage technology.

Reports | 2018

The Green P - Nutzung von städtischen Verkehrsflächen für die Produktion von Biomasse

Lichtenegger K, Meixner K, Riepl R, Schipfer F, Zellinger M. The Green P - Nutzung von städtischen Verkehrsflächen für die Produktion von Biomasse. BMVIT, Schriftenreihe 25/2018.

External Link Details
Conference presentations and posters | 2018

The Green Parking Area – Utilization of urban parking areas for cultivation of algae

Zellinger M, Riepl R, Lichtenegger K, Meixner K, Drosg B, Enigl M, Theuretzbacher F, Schipfer F. The Green Parking Area – Utilization of urban parking areas for cultivation of algae. presentation at the WSED, Wels, Austria, 01. March 2018.

Details

The present study examines the possible use of urban and rural traffic areas for producing biomass. Many of those areas (for example, parking lots at cinemas and shopping centers) are only intensively used during certain times. Most of the time those areas remain empty.
At the same time a major problem for large-scale implementation of renewable energy is the massive land use resulting from limited energy density of solar radiation and, in case of biomass production, low efficiency for utilization of solar radiation by plants. Additionally, renewable energies are often criticized for the fact that they require areas, which could also be used for food and feed production.
Therefore, it is an attractive idea to use some of the traffic areas that are lost for the ecosystem anyway for biomass production. This approach is novel that no data have been available yet. The aim of this work was therefore to develop technical solutions, to quantify the technical potential for this type of biomass production and, subsequently, for energy supply, based on data on the area utilization, climatic data and known properties of microalgae.
The work deals with the question of the technical potential for this approach in Austria. This question is
answered by a survey of the area data in Austria, the elaboration of technical systems for a possible implementation, as well as by calculating the biomass potential, based on simulation results. The data have been collected, analyzed and evaluated in a comprehensive literature search. The potential analysis provides an overview of the distribution of traffic areas in Austria and the resulting biomass potential. Thus, a list of possible areas including biomass and energy quantities is available.

Conference presentations and posters | 2017

The Green Parking Area – Utilization of urban parking areas for cultivation of microalgae

Zellinger M, Riepl R, Lichtenegger K, Meixner K, Drosg B, Enigl M, Theuretzbacher F, Schipfer F. The Green Parking Area – Utilization of urban parking areas for cultivation of microalgae. Presentation at the Eco City Summit 2017, Melbourne, Australia, 17. June 2017.

Details
Other Publications | 2017

The Green Parking Space – Nutzung von städtischen Verkehrsflächen für die Produktion von Biomasse

Schipfer F, Lichtenegger K, Zellinger M et al. The Green Parking Space – Nutzung von städtischen Verkehrsflächen für die Produktion von Biomasse. Präsentation. First Vienna Vertical Farming Meetup 01.03.2017, Wien.

Download PDF Details
Peer reviewed papers | 2020

The impact of project financing in optimizing microgrid design

Pecenak ZK, Mathiesen P, Fahy K, Cannon C, Ayandele E, Kirk TJ, Stadler M. The impact of project financing in optimizing microgrid design. Journal of Renewable and Sustainable Energy. November 2020. 12:026187.

External Link Details

A disconnect between real world financing and technical modeling remains one of the largest barriers to widespread adoption of microgrid technologies. Simultaneously, the optimal design of a microgrid is influenced by financial as well as technical considerations. This paper articulates the interplay between financial and technical assumptions for the optimal design of microgrids and introduces a design approach in which two financing structures drive an efficient design process. This approach is demonstrated on a descriptive test case, using well accepted financial indicators to convey project success. The major outcome of this paper is to provide a framework which can be adopted by the industry to relieve one of the largest hurdles to widespread adoption, while introducing multiple debt financing models to the literature on microgrid design and optimization. An equally important outcome from the test case, we provide several points of intuition on the impact of varying financing terms on the optimal solution.

Peer reviewed papers | 2016

The influence of oxygen availability on off-gassing rates of emissions from stored wood pellets

Meier F, Sedlmayer I, Emhofer W, Wopienka E, Schmidl C, Haslinger W, Hofbauer H. The influence of oxygen availability on off-gassing rates of emissions from stored wood pellets. Energy & Fuels. 18 February 2016;30(2): 1006-1012.

External Link Details

The phenomenon of off-gassing from wood pellets during storage has been the cause of several, in some cases fatal, accidents due to toxic atmospheres in storages. To optimize safety measures the nature of the responsible processes needs to be clarified. In this study the impact of O2 availability, which is a decisive factor for the presumed oxidation of fatty acids, is pointed out. Off-gassing rates of CO, CO2, VOC, and CH4 of pellets at relatively constant O2 levels of approximately 35%, 20%, and <1% over a period of 20 d at approximately 295 K were investigated. For this purpose 7 kg of spruce pellets was stored under simulated ventilation of the atmosphere in a 31 L tank. Gas concentrations were determined every 24 h by GC-FID/TCD. Compared to the mean emission rates at 35% O2 of CO (0.22 mg kg–1pelletsd.b. in 24 h) and CO2 (0.76 mg kg–1pelletsd.b. in 24 h) the lowest O2 concentration of <1% resulted in a significant reduction of off-gassing rates of 40% for both gases. In contrast the release rates of VOCs and also CH4 decreased with the higher O2 concentration (0.035 to 0.025 mg kg–1pelletsd.b. in 24 h; 0.0085 to 0.0061 mg kg–1pelletsd.b. in 24 h), presumably, because of increased onward reactions to CO and CO2. Since off-gassing was not prevented by the lack of O2 (<1% O2-trial) it is assumed that the O2 required for the reactions originated from the biomass itself. During the storage of pellets at 20% O2, emission rates of CO (0.18 mg kg–1pelletsd.b. in 24 h) and CO2 (0.79 mg kg–1pelletsd.b. in 24 h) at the start decreased by more than 20% and those for VOCs (0.032 mg kg–1pelletsd.b. in 24 h) by almost 30% after 3 weeks. It can be assumed that in ventilated storages the reactivity and thus a potential risk from off-gases from wood pellets decreases considerably in only a few weeks. The effects of aging, in terms of declining reactivity at relatively constant tank conditions, on off-gassing rates could be clarified for the first time. A realistic development of the decline of reactivity of the material itself could be determined.

Conference presentations and posters | 2015

The Influence of Wood Pellet Prices on Heat Generation Costs of Alternative Heating Systems

Kristöfel C, Strasser C, Schmid E. The Influence of Wood Pellet Prices on Heat Generation Costs of Alternative Heating Systems, 23rd European Biomass Conference 2015, 1st-4th of June 2015, Vienna, Austria. (oral presentation)

Details
Peer reviewed papers | 2016

The interplay of self-reflection, social interaction and random events in the dynamics of opinion flow in two-party democracies

Lichtenegger K, Hadzibeganovic T. The interplay of self-reflection, social interaction and random events in the dynamics of opinion flow in two-party democracies. International Journal of Modern Physics C. 1 May 2016;27(5).

External Link Details
We propose a continuous process opinion formation model to study the dynamics of a multi-level relationship between voters, political parties, and facts in two-party democratic elections. In our model, opinions can take any real value between two extremes and an unaligned, moderate opinion state without a preference. Starting with a random opinion configuration, individual voter opinions evolve and change over time due to self-reflection, inter-personal communication, external media influence, and noise. Parties are influenced by their own ideologies, facts, and voters’ opinions. Elections are held periodically and the party that is closer in opinion to the majority of voters forms the new government. The government policy is then expected to be in proximity to the voter opinions and the policies of the currently ruling political party. We analyze the tension of opinions as a measure of how dramatically opinions can disagree within a given sample of voters and the success of the government and parties as the degree of coincidence between the policies and facts. Our model generates realistic quasi-periodic alternations between incumbents and challengers that are typical for two-party systems. Moreover, our model shows that relative to other voters’ strategies, conscious voting can lead to more successful governments of not only fact-oriented but also pragmatic and balanced political parties, irrespective of the strategies of the competing opposition parties. In addition, our simulations uncover several interesting features including less victories for strictly ideological or fact-oriented parties unless they include some aspects of populism or pragmatism. In this sense, our model can also describe situations where election outcomes are not necessarily based on votes for the current programs of competing parties and their placement on relevant issues, but instead result from voters’ dissatisfaction with the previous government and the votes against it.


Read More: http://www.worldscientific.com/doi/abs/10.1142/S0129183116500650
Other papers | 2013

The mechanism of bed material coating in dual fluidized bed biomass steam gasification plants and its impact on plant optimization

Kirnbauer F, Hofbauer H. The mechanism of bed material coating in dual fluidized bed biomass steam gasification plants and its impact on plant optimization. Powder Technol. 2013;245:94-104.

External Link Details

The bed material and especially its catalytic activity plays an important role in biomass steam gasification in dual fluidized bed gasifiers. The bed material is modified by interaction with biomass ash during operation of the gasification plant forming layers at the particles which are induced by the biomass ash. Optimization of dual fluidized biomass steam gasification will have significant influence on the process variables such as temperatures, inorganic composition and product gas composition. The influence of these changes on layer formation is still unknown. This paper summarizes results of investigations about bed material characteristics taken from the industrial-scale biomass steam gasification plant in Güssing where woody biomass is used as fuel. Analyses of the surface and the crystal structures of the bed material particles treated in gasification and combustion atmospheres were carried out. The thermal behavior of used olivine and fresh olivine in different atmospheres was analyzed. A suggestion for the mechanism of formation of the layers is presented and the influence of possible optimization measures is discussed. A change in the elemental composition of the surface was not detectable but a slight change in the crystal structure. Thermal investigations show a weak endothermic weight loss with used olivine in a CO2-rich atmosphere which could not be determined with fresh olivine. The formation of layers at the olivine particles is considered to be caused by the intensive contact with burning char particles in the combustion reactor. © 2013 Elsevier B.V.

Conference presentations and posters | 2020

The modification of biogenic carbon-rich solids opens new possibilities

Martini S, Kienzl N, Ortner M, Loipersböck J. The modification of biogenic carbon-rich solids opens new possibilities. Biochar Workshop @ 6th Central European Biomass Conference (oral presentation). 2020.

External Link Details
Other papers | 2012

The positive effects of bed material coating on tar reduction in a dual fluidized bed gasifier

Kirnbauer F, Wilk V, Kitzler H, Kern S, Hofbauer H. The positive effects of bed material coating on tar reduction in a dual fluidized bed gasifier. Fuel. 2012;95:553-562.

Details

The utilization of biomass for the substitution of fossil fuels to reduce greenhouse gas emissions in biomass steam gasification plants is a promising technology for the production of electricity, heat, and fuels for transportation. Experience from industrial scale dual fluidized bed steam gasification plants showed a modification of the bed material due to the interaction of the bed material (olivine) with biomass ash components and additives. In this paper the influence of bed material modification on the gasification properties of used olivine from an industrial scale plant in Güssing is compared with the case of fresh olivine. The trials were carried out under similar conditions in a pilot plant at the Vienna University of Technology. The pilot plant trials showed an increase in hydrogen and carbon dioxide in the product gas with the used bed material while the content of carbon monoxide in the product gas decreased. The exothermal water–gas shift reaction is enhanced by the used bed material, resulting in a lower energy demand for the gasification. Tar content was decreased by around 80% for tars detected by gas chromatography–mass spectrometry (GCMS) and the composition of the tar showed less components during the trial with used bed material.

The results obtained with the used bed material at the 100 kW pilot plant are in good agreement with those for the 8 MW industrial plant in Güssing, confirming good scale-up properties from the 100 kW plant to industrial scale plants.

Conference presentations and posters | 2010

The present state and future development of industrial biomass combustion for heat and power generation

Obernberger I. The present state and future development of industrial biomass combustion for heat and power generation, ASME-ATI-UIT 2010 Conference on Thermal and Environmental Issues in Energy Systems 2010, 16th-19th of May 2010, Sorrento, Italy.

Details
Other papers | 2021

The robust exact differentiator toolbox revisited: Filtering and discretization features.

Andritsch B, Horn M, Koch S, Niederwieser H, Wetzlinger M, Reichhartinger M. The robust exact differentiator toolbox revisited: Filtering and discretization features. in 2021 IEEE International Conference on Mechatronics, ICM 2021. Institute of Electrical and Electronics Engineers. 2021. 9385675 https://doi.org/10.1109/ICM46511.2021.9385675

External Link Details

An extended version of a Simulink ® -block providing on-line differentiation algorithms based on discretized sliding-mode concepts is presented. Based on user-specified settings it computes estimates of the time-derivatives of the input signal up to order ten. Different discrete-time estimation algorithms as well as optional filtering properties can be selected. The paper includes an overview of the implemented algorithms, a detailed explanation of the developed Simulink ® -block and two examples. The first example illustrates the application of the toolbox in a numerical simulation environment whereas the second one shows results obtained via an electrical laboratory setup.

Filter

Contact Us

We invite you to contact our office under office@best-research.eu or a member of our personnel directly from this website. Fast and simple.

To Our Team Page