Publications

Other Publications | 2019

Betrieb bei maximaler Effizienz und minimalen Emissionen durch CO-Lambda-Optimierung

Zemann C, Hammer F. Betrieb bei maximaler Effizienz und minimalen Emissionen durch CO-Lambda-Optimierung. Heizwerke-Betreibertag 2019, Sieggraben, 07. Oktober 2019 (oral presentation).

Download PDF Details
Reports | 2019

Bioenergy in Austria

Bacovsky D, Matschegg D. Bioenergy in Austria. Federal Ministry for Transport, Innovation and Technology. 2019:52.

Federal Ministry for Transport, Innovation and Technology

External Link Details
Conference presentations and posters | 2019

Bioenergy retrofits for Europe´s industry - the BIOFIT project (Horizon 2020)

Reumerman P, Vos J, Rutz D, Janssen R, Bacovsky D, Gröngröft A, Saastamoinen H, Karampinis E, Ballesteros M, Johansson D, Kazagic A, Wanders M, Meeusen M, Hull A, Kiartzis S, Garcia J. Bioenergy retrofits for Europe´s industry - the BIOFIT project (Horizon 2020). 27th European Biomass Conference & Exhibition (Poster). May 2019.

Details
Other Publications | 2019

BIOFIT – Bioenergieumrüstungen für Europas Industrie

Bacovsky D. BIOFIT – Bioenergieumrüstungen für Europas Industrie. Highlights der Energieforschung 2019. October 2019.

Details
Conference presentations and posters | 2019

Biomassevergasung als künftige Säule der Gasversorgung in Österreich

Strasser C. Biomassevergasung als künftige Säule der Gasversorgung in Österreich. 10. Internationale Anwenderkonferenz Biomassevergasung. Dec 2019.

Details
Conference presentations and posters | 2019

Biomassevergasung als künftige Säule der Gasversorgung in Österreich?

Strasser C. Biomassevergasung als künftige Säule der Gasversorgung in Österreich?. 10. Internationale Anwenderkonferenz Biomassevergasung. December 2019

Details
Reports | 2019

C200600_1 - Experimental Campaign Summer 2019

Fürsatz K, Kuba M, Karel T, Priscak J. C200600_1 - Experimental Campaign Summer 2019. Report on experimental test runs. November 2019.

Details
Conference presentations and posters | 2019

Catalytic tar reforming with sewage sludge char of a producer gas from fluidized bed co-gasification of sewage sludge and wood

von Berg L, Doğan C, Aydın ES, Retschitzegger S, Scharler R, Anca-Couce A. Catalytic tar reforming with sewage sludge char of a producer gas from fluidized bed co-gasification of sewage sludge and wood. 27th European Biomass Conference & Exhibition (Poster). May 2019.

External Link Details

Fluidized bed gasification of sewage sludge is a promising method for its valorisation due to the fuel flexibility of the process. The main drawbacks are the impurities present in the producer gas, with a high tar content, and its low calorific value. In this study, sewage sludge and wood mixtures are gasified in a fluidized bed. A tar cracking reactor is used to reduce the amount of tars and to increase the calorific value of the producer gas. Sewage sludge char is employed for tar cracking with a real producer gas, showing the feasibility of the process with a tar conversion of about 80% at the beginning. The test was conducted for several hours and tar deactivation was observed, which lead to a decrease of tar conversion to about 35% after 5 hours. Reactivating the char with steam increases again the tar conversion up to 84%, however, the subsequent deactivation was found to be faster compared to the one for fresh char. First tests using char from the gasification process in the tar cracking unit also show promising results.

Peer reviewed papers | 2019

Characterization and performance evaluation of ammonia as fuel for solid oxide fuel cells with Ni/YSZ anodes

Stoeckl B, Subotić V, Preininger M, Schwaiger M, Evic N, Schroettner H, Hochenauer C. Characterization and performance evaluation of ammonia as fuel for solid oxide fuel cells with Ni/YSZ anodes. Electrochimica Acta 2019;298:874-883.

External Link Details

Ammonia appears to be a promising fuel for solid oxide fuel cell systems: it is a carbon-free species, can be stored easily and offers an excellent energy density with a high hydrogen content. This work shows comprehensive investigations of the direct operation of ammonia on an industrial-sized solid oxide fuel cell with Ni/YSZ anode. In the course of this study, ammonia exhibited excellent performance as a fuel for solid oxide fuel cells, although test results equivalent to those of hydrogen/nitrogen fuel mixtures were not attained. Electrochemical impedance spectroscopy proved the reduced performance output of ammonia as fuel to result from its endothermic decomposition. This significantly increased the ohmic resistance, which is mainly influenced by the ammonia flow rate. Operation in counter-flow is more favorable than in co-flow, as lower ohmic and diffusion resistances were measured. Twenty-four-hour stability tests showed stable behavior at 800 °C and a voltage decrease of 2% at 700 °C. Investigations of the anode micro-structure suggest that nickel nitriding occurred, as microscopic pores, particle enlargements, and agglomerations were identified at the metallic parts.

Reports | 2019

CO-Lambda optimization

Operation of biomass boilers at maximum efficiency and with complete combustion

Zemann C, Gölles M. CO-Lambda optimization - Operation of biomass boilers at maximum efficiency and with complete combustion. 2019.

Download PDF Details
Reports | 2019

CO-Lambda-Optimierung

Betrieb von Feuerungen bei maximalem Wirkungsgrad und vollständigem Ausbrand

Zemann C, Gölles M. CO-Lambda-Optimierung - Betrieb von Feuerungen bei maximalem Wirkungsgrad und vollständigem Ausbrand. 2019.

Download PDF Details
Peer reviewed papers | 2019

Co-Simulation of an Energy Management System for Future City District Energy Systems

Moser AGC, Muschick D, Gölles M, Lerch W, Schranzhofer H, Nageler PJ et al. Co-Simulation of an Energy Management System for Future City District Energy Systems. In Proceedings of the International Conference on Innovative Applied Energy. 2019.

External Link Details

The continuous increase of (volatile) renewable energy production and the development of energy-efficient buildings have led to a transformation of city districts’ energy systems. Their complexity has increased significantly due to the coupling of the different energy sectors like heating, cooling and electricity. Such complex multi-energy systems can be operated more efficiently and reliably if knowledge of their specific components (in terms of mathematical models) as well as knowledge of weather forecasts is incorporated in a high-level controller, which is typically referred to as an Energy Management System (EMS). However, still little comprehensive information on the costs and the practical advantages of such systems is available. For this reason, a simulation environment to estimate the real costs and advantages of the use of such an EMS is required. Consequently, this work focuses on the development of an EMS for future city districts’ energy systems and the development of a co-simulation environment in order to demonstrate the benefits of the use of the developed EMS in comparison to a conventional control strategy. The co-simulation is implemented with the aid of the co-simulation platform Building Controls Virtual Test Bed (BCVTB) and consists of the following parts: a non-linear, thermoelectric model and a control block containing either the conventional control strategy or the EMS. The thermoelectric model is built up using the well-established simulation tools TRNSYS and IDA-ICE, simulating the energy hub of the city district and the districts’ buildings, respectively. The control block is simulated using MATLAB, where IBM ILOG CPLEX is used for solving the resulting mixed-integer linear program (MILP) of the EMS. Finally, an economic model for financial (and ecological) assessment of the operation is simulated with the aid of the software package Dymola. To put the developed EMS and the co-simulation into practise a case study based on a new city district in Graz, Austria, which is currently in the planning stage, is carried out. The integration of the responsible planners and investors in the modelling process guarantees the models’ practical applicability. In the case study the performance of the originally planned conventional control strategy is compared with the performance of the developed EMS using annual simulations with a simulation time step of 1 minute, and a 24 hour prediction horizon and a 15 minute time step for the EMS. For a more robust and realistic comparison both control strategies are simulated for different scenarios considering current and future (2060) climate conditions, medium and high energy demands (load), ideal and real load prediction methods and varying import prices for electricity from the electricity grid. The results show that the use of the developed EMS strategy results in reduced annual total costs (considering operational and investment costs of additionally suggested distributed energy resources) in comparison to the conventional control strategy. Furthermore, the annual CO2-emissions could be reduced by increasing the self-consumption of the installed (renewable) energy resources and thus decreasing the necessary energy imports from the electricity and the heating grid.

Conference presentations and posters | 2019

Co-Simulation of an Energy Management System for Future City District Energy Systems (Presentation)

Moser AGC, Muschick D, Gölles M, Lerch W, Schranzhofer H, Nageler PJ et al. Co-Simulation of an Energy Management System for Future City District Energy Systems. International Conference on Innovative Applied Energy. 2019. (Oral presentation, 15.03.2019.)

External Link Details

Slides of the talk "Co-Simulation of an Energy Management System for Future City District Energy Systems"

Peer reviewed papers | 2019

Cultivation of the microalga Eustigmatos magnus in different photobioreactor geometries and subsequent anaerobic digestion of pre-treated biomass

Gruber-Brunhumer MR, Schöberl A, Zohar E, Koenigsberger S, Bochmann G, Uher B, Lang I, Schagerl M, Fuchs W, Drosg B. Cultivation of the microalga Eustigmatos magnus in different photobioreactor geometries and subsequent anaerobic digestion of pre-treated biomass. Biomass and Bioenergy 2019.105303.

External Link Details

Microalgal biomass as a feedstock for biogas production is linked to the parameters biomass productivity and biogas yield. Besides an easy-to-use strain for anaerobic digestion, the photobioreactor (PBR) design is important. A microalgae strain selection revealed Eustigmatos magnus (SAG 36.89) as the most promising strain yielding an average of 100 mg total suspended solids (TSS) L−1 day−1. The strain was tested in cost-effective sleevebag-PBR-systems of 10 cm, 20 cm and 30 cm diameter facing the light from the front or laterally. Highest mean productivity on a volumetric basis was measured in PBRs with the lowest diameter (104 and 117 mg L−1 day−1. The highest productivity per m−2 was achieved in 10 cm PBRs with front light configuration (9.35 g TSS m−2 day−1). The lateral light configuration of 10 cm PBRs had positive aspects such as the lowest mean water demand to produce 1 kg TSS (481 L−1 kg−1) and the lowest mean energy demand for medium separation of 1 kg TSS (106 Wh). The concentrated microalgal biomass was then subjected to ultrasonication and thermal pre-treatment (90 °C and 120 °C) and tested in BMP tests. Mesophilic anaerobic mono-digestion of untreated microalgae biomass led to a methane (CH4) yield of 343 L−1 kg−1 volatile solids (VS). Thermal pre-treatment at 120 °C resulted in significantly increased CH4 yields of 430 L−1 kg−1 VS. As thermal pre-treatment can be easily installed nearby a biogas plant it could be an interesting option for AD of microalgal biomass with only little investment.

Conference presentations and posters | 2019

Customizing biomass as reducing agent in blast furnace steelmaking – preliminary results

Strasser C, Kienzl N, Martini S, Dißauer C, Deutsch R. Customizing biomass as reducing agent in blast furnace steelmaking – preliminary results. 27th European Biomass Conference & Exhibition (Poster). May 2019.

External Link Details

The reduction of greenhouse gas emission is an important issue for steel industry. One possibility is to use biomass-based reducing agents, also called bioreducers, to replace a least partly the fossil reducer agents. To produce bioreducer we treated woody biomass in a lab-scale muffle furnace, we performed grinding experiments with a ball mill, we analyzed the particle size distribution with laser diffraction and we used a rotating device, the revolution powder analyzer, for flow behavior investigations. Our preliminary results show that treatment temperatures >250 oC bring adequate increased calorific value and improved grindability. For a certain treatment temperature the particle size distribution and as well the flow behavior shows similarities to lignite.

Conference presentations and posters | 2019

Decomposition of tars in dual fluidized bed gasification – mechanisms of formation and decomposition in long-term operation

Umeki K, Priscak J, Kuba M. Decomposition of tars in dual fluidized bed gasification – mechanisms of formation and decomposition in long-term operation. ICPS 2019.

Details
Reports | 2019

Deliverable 4.2 Development of protocols relevant for biochemical and thermochemical conversion of biomass

Oliveira C, Carvalheiro F, Duarte KC, del Campo I, Fryda LE, Banks S, Anca-Couce A, Gírio F, Retschitzegger S. Deliverable 4.2 Development of protocols relevant for biochemical and thermochemical conversion of biomass. BRISK II - Deliverable. November 2019

Details
Reports | 2019

Deliverable 5.1 - Interim Report on Tasks 5.1 – 5.5

Retschitzegger S, Kienzl N, Wang S, Yang W, Banks S, Colmenar I, et al. Deliverable 5.1 - Interim Report on Tasks 5.1 – 5.5. BRISK II - Deliverable. March 2019.

Details
Reports | 2019

Deliverable 6.2 Improved and extended tar protocol

Anca‐Couce A, von Berg L, Kienzl N, Martini S, del Campo I, Funcia I, Kraia T, Panopoulos K, Fryda K, Geusebroek M, Engvall K, Tuomi S. Deliverable 6.2 Improved and extended tar protocol. BRISK II - Deliverable. December 2019.

Details
Reports | 2019

Deliverable 7.3 - Infrastructure upgrading / modifications: biobased intermediates conversion

Panopoulos K, Bampaou M, Retschitzegger S, del Campo Colmenar I, Zimbardi F, Girio F, Anca-Couce A, Safi C. Deliverable 7.3 - Infrastructure upgrading / modifications: biobased intermediates conversion. BRISK II - Deliverable. November 2019.

Details
Conference presentations and posters | 2019

Development of a New Method for Investigation of the Ash Melting Behavior in the Fluidized Bed Conversion Processes

Priscak J, Kuba M, Hofbauer H. Development of a New Method for Investigation of the Ash Melting Behavior in the Fluidized Bed Conversion Processes. ICPS 2019.

Details
Peer reviewed papers | 2019

Double-cropping systems based on rye, maize and sorghum: Impact of variety and harvesting time on biomass and biogas yield

Wannasek L, Ortner M, Kaul HP, Amon B, Amon T. Double-cropping systems based on rye, maize and sorghum: Impact of variety and harvesting time on biomass and biogas yield. European Journal of Agronomy 2019.110:125934

External Link Details

Climate change affects the frequency and intensity of extreme weather, the results of which include production losses and climate-induced crop productivity fluctuations.

Double-cropping systems (DCSs) have been suggested as a way to increase biomass-production while simultaneously delivering environmental benefits. In a three-year field-test, two DCSs based on maize and sorghum as the main crop and rye as the preceding winter crop were compared with each other and compared with 2 single-cropping systems (SCSs) of maize or sorghum; there were comparisons of growth dynamics, optimal harvesting and growing time as well as biomass and methane yield. In addition, the impact of variety and harvest time on the winter rye optimal biomass yield was studied.

The experiments clearly showed the superiority of the DCS over the SCS. Within the DCS, the rye/sorghum combination achieved significantly higher biomass yields compared to those of the rye/maize combination. The highest dry matter biomass yield was achieved during year 1 at 27.5 ± 2.4 t∙ha−1, during which winter rye contributed 8.3 ± 0.7 t∙ha−1 and sorghum contributed 19.2 ± 1.8 t∙ha−1. At the experimental location, which is influenced by a Pannonia climate (hot and dry), the rye/sorghum DCS was able to obtain average methane yields per hectare, 9300 m3, whereas the rye/maize combination reached 7400 m3. In contrast, the rye, maize and sorghum SCSs achieved methane yields of 4800, 6100 and 6500 m3 ha−1, respectively. The study revealed that the winter rye and sorghum DCS is a promising strategy to counteract climate change and thus guarantee crop yield stability.

Peer reviewed papers | 2019

Effects of partial maize silage substitution with microalgae on viscosity and biogas yields in continuous AD trials

Gruber-Brunhumer MR, Montgomery LFR, Nussbaumer M, Schoepp T, Zohar E, Muccio M, Ludwig I, Bochmann G, Fuchs W, Drosg B. Effects of partial maize silage substitution with microalgae on viscosity and biogas yields in continuous AD trials. Journal of Biotechnology 2019;295:80-89.

External Link Details

The microalga Acutodesmus obliquus was investigated as a feedstock in semi-continuously fed anaerobic digestion trials, where A. obliquus was co-digested with pig slurry and maize silage. Maize silage was substituted by both 10% and 20% untreated, and 20% ultrasonicated microalgae biomass on a VS (volatile solids) basis. The substitution of maize silage with 20% of either ultrasonicated and untreated microalgae led to significantly lower biogas yields, i.e., 560 dm³ kg−1 VScorr in the reference compared to 516 and 509 dm³ kg-1VScorr for untreated and ultrasonicated microalgae substitution. Further, the viscosities in the different reactors were measured at an OLR of 3.5 g VS dm-3 d-1. However, all treatments with microalgae resulted in significantly lower viscosities. While the mean viscosity reached 0.503 Pa s in the reference reactor, mean viscosities were 53% lower in reactors where maize was substituted by 20% microalgae, i.e. 0.239 Pa s, at a constant rotation speed of 30 rpm. Reactors where maize was substituted by 20% ultrasonicated microalgae had a 32% lower viscosity, for 10% microalgae substitution a decrease of 8% was measured. Decreased viscosities have beneficial effect on the bioprocess and the economy in biogas plants. Nonetheless, with regard to other parameters, no positive effect on biogas yields by partial substitution with microalgae biomass was found. The application of microalgae may be an interesting option in anaerobic digestion when fibrous or lignocellulosic substances lead to high viscosities of the digested slurries. High production costs remain the bottleneck for making microalgae an interesting feedstock.

Peer reviewed papers | 2019

Efficient Multi-Year Economic Energy Planning in Microgrids

Pecenak Z, Stadler M, Fahy K, Efficient Multi-Year Economic Energy Planning in Microgrids. Applied Energy 2019;225.

External Link Details

With energy systems, the problem of economic planning is decisive in the design of a low carbon and resilient future grid. Although several tools to solve the problem already exist in literature and industry, most tools only consider a single “typical year” while providing investment decisions that last around a quarter of a century. In this paper, we introduce why such an approach is limited and derive two approaches to correct this. The first approach, the Forward-Looking model, assumes perfect knowledge and makes investment decisions based on the full planning horizon. The second novel approach, the Adaptive method, solves the optimization problem in single year iterations, making incremental investment decisions that are dependant on previous years, with only knowledge of the current year. Comparing the two approaches on a realistic microgrid, we find little difference in investment decisions (maximum 21% difference in total cost over 20 years), but large differences in optimization time (up to 12000% time difference). We close the paper by discussing implications of forecasting errors on the microgrid planning process, concluding that the Adaptive approach is a suitable choice.

Peer reviewed papers | 2019

Efficient Multi-Year Economic Energy Planning in Microgrids

Pecenak Zachary K, Stadler M,Fahy K. Efficient Multi-Year Economic Energy Planning in Microgrids. Applied Energy Journal by Elsevier, ISSN: 0306-2619

External Link Details

With energy systems, the problem of economic planning is decisive in the design of a low carbon and resilient future grid. Although several tools to solve the problem already exist in literature and industry, most tools only consider a single “typical year” while providing investment decisions that last around a quarter of a century. In this paper, we introduce why such an approach is limited and derive two approaches to correct this. The first approach, the Forward-Looking model, assumes perfect knowledge and makes investment decisions based on the full planning horizon. The second novel approach, the Adaptive method, solves the optimization problem in single year iterations, making incremental investment decisions that are dependant on previous years, with only knowledge of the current year. Comparing the two approaches on a realistic microgrid, we find little difference in investment decisions (maximum 21% difference in total cost over 20 years), but large differences in optimization time (up to 12000% time difference). We close the paper by discussing implications of forecasting errors on the microgrid planning process, concluding that the Adaptive approach is a suitable choice.

Conference presentations and posters | 2019

Evaluation of analytical methods for assessing biomass gasification producer gas quality for solid oxide fuel cell (SOFC) operation

Martini S, Lagler J, Tsiotsias T, Kienzl N, Anca-Couce A. Evaluation of analytical methods for assessing biomass gasification producer gas quality for solid oxide fuel cell (SOFC) operation. 27th European Biomass Conference & Exhibition (Poster). May 2019.

External Link Details

The efficient and flexible conversion of solid biomass into energetic products will be an essential part of a future renewable, independent and reliable energy providing system. The main objective of the project Bio-CCHP is the development of a novel tri-generation system, including biomass gasification, gas cleaning, a Solid Oxide Fuel Cell (SOFC) and a cooling machine with the aim to produce electricity, heat and cold (CCHP), maximizing the efficiency and flexibility of the system. However, the employment of biomass derived product gas as fuel gas for SOFC is facing new challenges for gas quality assurance. For the evaluation of required dry high temperature gas cleaning processes the applied methods of gas characterization have to be accurate and reliable. Therefore, a comprehensive evaluation of analytical methods for the detection of SOFC harmful compounds is conducted within the ongoing project. First results of online and offline sampling and analysis methods employed at air- and steam-operated gasifiers are shown in this paper.

Conference presentations and posters | 2019

Evaluation of methane emissions from different Austrian biogas plants using harmonised methods including an open-path technology

Wechselberger V, Huber-Humber M, Meixner K, Knoll L, Hrad M. Evaluation of methane emissions from different Austrian biogas plants using harmonised methods including an open-path technology. 17th International Waste Management and Landfill Symposium, Calgari Italy. Sep 2019.

External Link Details

Although the number of studies investigating the contribution of anaerobic digestion facilities to greenhouse gas (GHG) emissions has increased during the last decade, reliable data with respect to gaseous process losses from these management practices, particularly at commercial scale, is scarce (Liebetrau et al., 2013, Reinelt et al., 2017, Hrad et al., 2015). The dynamic and fugitive nature of methane emissions, changing operating conditions, and different as well as not standardised measurement approaches compromise the precise quantification of the overall emissions from full-scale biogas plants. However, reliable and verifiable emission data from biogas or biomethane facilities are required in order to optimise and improve the plant-specific process efficiency as well as future technology developments. In addition, precise and comprehensive measurement data from full-scale waste treatment facilities are needed for more accurate emission factors (EFs) estimates, which are required for annual reporting according to the Intergovernmental Panel on Climate Change (IPCC) guidelines (IPCC, 2006).
Within the European project “EvEmBi - Evaluation and reduction of different biogas plant concepts” (2018-2021, funded within the 11th ERA-NET bioenergy call) 15 partners from 5 European countries evaluate the existing technologies at biogas plants regarding their methane EFs and develop emission reduction strategies, respectively. The focus of the Austrian research group within this project is the evaluation of Austrian bio-waste plants.
In a first step, emissions from single sources as well as overall plant emissions are quantified. For the latter, the Austrian team uses an open-path technology (Open-Path Tunable-Diode-Laser-Spectroscopy) together with meteorological data (ultra-sonic anemometer) and inverse dispersion modelling (Backward Lagrangian Model). In order to determine comparable EFs, the applied methodologies are based on a measurement guideline developed in the previous project “MetHarmo – European harmonization of method to quantify methane emissions from biogas plants” (funded within the 9th ERA-NET bioenergy call). In addition, the determined EFs of the individual plant concepts are transferred to EFs of the entire plant inventory of the particular countries. For that, a model for EF quantification is used which is based on statistical information on the emissions from different plant components as well as on the distribution of certain technologies present in the participating countries. Furthermore, for the particular biogas plants emission reduction strategies are developed, implemented and verified.
In this presentation, the harmonised approach, first emission results from the Austrian measurement campaigns as well as emission reduction strategies are presented.

Other papers | 2019

Evaluation of the Operational Behaviour of Fixed-bed Biomass Gasifiers - A Novel Approach for Steady-state Analysis

Hollenstein C, Zemann C, Antolini D, Patuzzi F, Martini S, Baratieri M, Gölles M. Evaluation of the Operational Behaviour of Fixed-bed Biomass Gasifiers - A Novel Approach for Steady-state Analysis. Proceedings of the 27th European Biomass Conference and Exhibition, Vols. 27-30 May 2019, pp. 849-860, 2019.

External Link Details

Assessing the operational behaviour of biomass gasification systems is a crucial basis for further improvements in terms of operational behaviour and robustness in order to increase the technologies’ operational and economic viability. However, in most fixed-bed biomass gasification systems not all parameters required for the assessment can be measured directly. Typically, unknown parameters are determined by using as many balance equations as parameters have to be determined neglecting the additional information provided by other available but not chosen balance equations. Thus, these approaches do not incorporate all measurement data available resulting in a lack of reliability in their results. A detailed analysis of these approaches emphasises that even small deviations in the measurement data can lead to significant deviations in the calculated parameters, demonstrating that individual choices of equations can be highly sensitive regarding measurement uncertainties.

Therefore, an adjusted weighted least squares approach is developed utilizing an overdetermined system of equations incorporating all balance equations simultaneously. Thus, all measurement data available is taken into account, minimizing the influences of measurement uncertainties on the determined parameters. A comprehensive analysis shows that this approach is less sensitive to measurement uncertainties, allowing for a more reliable and accurate assessment of fixed-bed biomass gasifiers.

Keywords: fixed-bed, gasification, mass balance, performance assessment

Peer reviewed papers | 2019

Experimental demonstration of 80 kWth chemical looping combustion of biogenic feedstock coupled with direct CO2 utilization by exhaust gas methanation

Fleiß B, Bartik A, Priscak J, Benedikt F, Fuchs J, Müller S, Hofbauer H.Experimental demonstration of 80 kWth chemical looping combustion of biogenic feedstock coupled with direct CO2 utilization by exhaust gas methanation. Biomass Conversion and Biorefinery.10 May 2023

External Link Details

Chemical looping combustion is a highly efficient CO2 separation technology without direct contact between combustion air and fuel. A metal oxide is used as an oxygen carrier in dual fluidized beds to generate clean CO2. The use of biomass is the focus of current research because of the possibility of negative CO2 emissions and the utilization of biogenic carbon. The most commonly proposed OC are natural ores and residues, but complete combustion has not yet been achieved. In this work, the direct utilization of CLC exhaust gas for methane synthesis as an alternative route was investigated, where the gas components CO, CH4 and H2 are not disadvantageous but benefit the reactions in a methanation step. The whole process chain, the coupling of an 80 kWth pilot plant with gas cleaning and a 10 kW fluidized bed methanation unit were for this purpose established. As OC, ilmenite enhanced with limestone was used, combusting bark pellets in autothermal operation at over 1000 °C reaching high combustion efficiencies of up to 91.7%. The fuel reactor exhaust gas was mixed with hydrogen in the methanation reactor at 360 °C and converted with a methane yield of up to 97.3%. The study showed especially high carbon utilization efficiencies of 97% compared to competitor technologies. Based on the experimental results, a scale-up concept study showed the high potential of the combination of the technologies concerning the total efficiency and the adaptability to grid injection.

Peer reviewed papers | 2019

Experimental investigation on biomass shrinking and swelling behaviour: Particles pyrolysis and wood logs combustion

Caposciutti G, Almuina-Villar H, Dieguez-Alonso A, Gruber T, Kelz J, Desideri U, Hochenauer C, Scharler R, Anca-Couce A. Experimental investigation on biomass shrinking and swelling behaviour: Particles pyrolysis and wood logs combustion. Biomass and Bioenergy 2019;123:1-13.

External Link Details

Biomass is a suitable energy source to reduce the carbon footprint and increase the use of renewable energy. However, the biomass exploitation is still slowed by many technical issues. In most practical applications, such as gasification or combustion devices, it is important to predict the fuel physical behavior in order to determine the emissions and heat release profile as well as for modeling and design purposes. Within this paper, the study of the dimensional evolution of a biomass fuel (beech wood) in pyrolysis and combustion processes were carried out with the use of the image analysis tool. Sizes from 15 mm to 300 mm characteristic length range were employed in the experiments and the collected data were related to the mass loss and temperature evolution of the biomass particle. It was found that for all the fuel sizes employed a similar volume reduction (60%–66%) was obtained at the end of pyrolysis. However, for the small particles with minor intra-particle gradients shrinkage took place mainly at the end of conversion, while for bigger particles the size variation patter was more linear. Furthermore, swelling was detected in the pyrolysis experiments, and it was higher for a bigger particle size, while cracking and fragmentation phenomena was observed for large wood logs combustion in the stove.

Reports | 2019

Factsheet Staubemissionen

Schwarz M, Strasser C. Factsheet Staubemissionen. 2019

Download PDF Details

Zum Erreichen der Ziele der österreichischen Klimastrategie leisten Biomassefeuerungen einen entscheidenden Beitrag. Um dabei die Luftgüte nicht außer Acht zu lassen, wird in diesem Factsheet der aktuelle und zukünftige Status (bis 2050) von Staubemissionen in Österreich basierend auf Literaturdaten und eigenen Messungen dargelegt, und der aktuelle Kenntnisstand zu Emissionen aus Biomasse-Kleinfeuerungen zusammengefasst.

Reports | 2019

Fischer-Tropsch products from biomass-derived syngas and renewable hydrogen

Gruber H, Groß P, Rauch R, Reichhold A, Zweiler R, Aichernig C, Müller S, Ataimisch N, Hofbauer H. Fischer-Tropsch products from biomass-derived syngas and renewable hydrogen. 2019.

External Link Details

Global climate change will make it necessary to transform transportation and mobility away from what we know now towards a sustainable, flexible, and dynamic sector. A severe reduction of fossil-based CO2 emissions in all energy-consuming sectors will be necessary to keep global warming below 2 °C above preindustrial levels. Thus, long-distance transportation will have to increase the share of renewable fuel consumed until alternative powertrains are ready to step in. Additionally, it is predicted that the share of renewables in the power generation sector grows worldwide. Thus, the need to store the excess electricity produced by fluctuating renewable sources is going to grow alike. The “Winddiesel” technology enables the integrative use of excess electricity combined with biomass-based fuel production. Surplus electricity can be converted to H2 via electrolysis in a first step. The fluctuating H2 source is combined with biomass-derived CO-rich syngas from gasification of lignocellulosic feedstock. Fischer-Tropsch synthesis converts the syngas to renewable hydrocarbons. This research article summarizes the experiments performed and presents new insights regarding the effects of load changes on the Fischer-Tropsch synthesis. Long-term campaigns were carried out, and performance-indicating parameters such as per-pass CO conversion, product distribution, and productivity were evaluated. The experiments showed that integrating renewable H2 into a biomass-to-liquid Fischer-Tropsch concept could increase the productivity while product distribution remains almost the same. Furthermore, the economic assessment performed indicates good preconditions towards commercialization of the proposed system.

Other papers | 2019

Ganzheitliche Planung dezentraler Energiekonzepte durch mathematische Optimierung

Liedtke P, Stadler M, Zellinger M, Hengl F. Ganzheitliche Planung dezentraler Energiekonzepte durch mathematische Optimierung. e-nova Konferenz 2019.

External Link Download PDF Details

Kernthema dieses Beitrags ist die ganzheitliche Konzeption von Mikronetze, die sich auf die Reduzierung von Kosten und CO2-Emissionen konzentriert. Mikronetze, oder auch Microgrids, ermöglichen die koordinierte Energieerzeugung von dezentralen Energieressourcen, die Speicherungen der produzierten Energie und ein Lastmanagement zum Ausgleich von Wärme-, Kälte- und Elektrizitätsdienstleistungen. Mikronetze können vom breiteren Versorgungsnetz getrennt werden, können diverse Dienstleistungen erbringen und/oder selbst Energie erzeugen sowie in Überschusszeiten speichern und bei Bedarf wieder Kosten- oder Stabilitäts-orientiert freigeben.
Die mathematische Optimierung dient als unvoreingenommene Alternative für eine gesamtheitliche Planung von dezentralen Energietechnologien. Dieses Kriterium wird bei einer Kosten- oder CO2-Reduktion vor allem dann essentiell, wenn vielfältigen Kombinationen von Technologien und Kapazitäten möglich sind. Modernste Ansätze betrachten jedoch einen quasistatischen Aufbau unter Verwendung linearisierte Modelle und Mixed Integer Linear Optimization (MILP), wobei dynamische Effekte vernachlässigt werden. Unter Berücksichtigung von Lasten, geografischen, ökonomisch-ökologischen und tariflichen Daten sind mathematische Optimierungsalgorithmen in der Lage, verschiedene Anwendungsfälle zu beurteilen, wobei Effekte wie Vorwärmung, Sollwertänderungen oder kurzfristige Sonnenschwankungen unberücksichtigt bleiben. Dies bedeutet, dass die in quasistatischen Ansätzen verwendete Wärme- und Strombilanzen ungenau sein können (eventuell können physikalische Randbedingungen sogar verletzt werden, was zu suboptimalen Ergebnissen bei der Planung führen würde).
Die Notwendigkeit besteht quasistatische Optimierung mit einer weiteren Modellierungsart zu vergleichen und die Auswirkungen auf traditionelle quasistatische Ansätze, wie sie in DER-CAM oder ReOpt eingesetzt werden, aufzudecken. Um Abweichungen - bestehend aus dynamischen oder sogar Rebound Effekten - zu erkennen, werden mit TRNSYS Gebäude- und Anlagensimulationen für eine geplante Siedlungsanlage erstellt und ein Energiekonzept mit dem mathematischen Optimierungsprogramm OptEnGrid berechnet. Der Ansatz wird für vier Doppelhäuser und ein Mehrfamilienhaus getestet. Die Gebäude werden in TRNSYS simuliert und bieten thermische Lastdaten für den Referenzfall. Auch die Stromerzeugung mit PV-Modellen und der elektrische Verbrauch mit synthetischen Lastprofilen sind sowohl in der Optimierung als auch in der Simulation beteiligt. In der elektrischen Stromerzeugung zeigt die mathematische Optimierung bereits eine Abweichung von mehr als 5% auf Jahresbasis zur TRNSYS-Simulation. Ergebnisse im thermischen Energiebereich folgen nach weiterer Auswertung.

Conference presentations and posters | 2019

GHG emission reduction costs of various technologies in the heating and mobility sectors

Strasser C, Schwarz M, Sturmlechner R, GHG emission reduction costs of various technologies in the heating and mobility sectors. 27th European Biomass Conference & Exhibition (Poster). May 2019.

Details
Peer reviewed papers | 2019

High Utilization of Humidified Ammonia and Methane in Solid Oxide Fuel Cells: An Experimental Study of Performance and Stability

Stöckl B, Preininger M, Subotic V, Gaber C, Seidl M, Sommersacher P, Schröttner H, Hochenauer C. High Utilization of Humidified Ammonia and Methane in Solid Oxide Fuel Cells: An Experimental Study of Performance and Stability. Journal of The Electrochemical Society 2019.166:F774-F783.

External Link Details

Wastewater contains high amounts of unused energy in the form of dissolved ammonia, which can easily be converted into gaseous humidified ammonia via membrane distillation, thus providing a potential fuel for solid oxide fuel cells. This study presents comprehensive investigations of the use of humidified ammonia as the primary fuel component in high-fuel utilization conditions. For these investigations, large planar anode- and electrolyte-supported solid oxide single cells were operated at the respective appropriate temperatures, 800°C and 850°C. Fueled with ammonia, both cells exhibited excellent ammonia conversion ( > 99.5%) in addition to excellent performance output and fuel utilization. In 100 h stability tests performed at 80% fuel utilization, the cells exhibited stable performance, despite scanning electron microscopy analyzes revealing partial impairments to the nickel parts of both cells due to the formation and subsequent decomposition of nickel nitride. This study also demonstrates that methane is a perfect additional fuel component for humidified ammonia streams, as steam supports the internal reforming of methane. Alternating and direct current as well as electrochemical impedance measurements with a variety of ammonia/steam/methane/nitrogen fuel mixtures were used to evaluate the performance potential of the cells, and proved their stability over 48 h in highly polarized conditions.

Other Publications | 2019

How to Introduce the Future Transport System

Bacovsky D. How to Introduce the Future Transport System. Transport Decarbonisation Workshop. November 2019.

Details
Peer reviewed papers | 2019

Implementation and long term experiences with a continuous hygienisation process in food industry – A case study

Wöss D, Ortner M, Mensik J, Kirchmayr R, Schumergruber A, Pröll T. Implementation and long term experiences with a continuous hygienisation process in food industry – A case study. Chemical Engineering and Processing - Process Intensification 2019;137:100-107.

External Link Details

A three tonne/hour batch-type hygienisation process for animal waste was replaced by a fully continuous process including heat integration. The plant is embedded into a pig abattoir including an anaerobic digestion (biogas) plant and gas-engine-based combined heat and power (CHP) production. Pre-heating is done in a series of four tube bundle apparatuses with heat transferred from the hot treated animal waste leaving the hygienisation plant. A closed water loop is used for heat transfer in this heat recovery arrangement. After pre-heating, the feed passes a second series of four tube bundles operated with heat from the biogas CHP plant in order to meet a target temperature of 72 °C at the inlet of the continuous hygienisation section. The material leaving the tube section is finally cooled in a series of four tube bundles and provides heat for pre-heating the feed before it is directed into the biogas plant. The process was started up in 2011 and monitoring results are be presented from 2011 to 2016. With the implementation of the continuous process, energy consumption of the hygienisation step was reduced by 64% for thermal and by 69% for electric energy.

Other papers | 2019

Increased economic efficiency of dual fluidized bed plants via model-based control

Nigitz T, Gölles M, Aichernig C, Schneider S, Hofbauer H, Horn M. Increased economic efficiency of dual fluidized bed plants via model-based control. In 27th European Biomass Conference and Exhibition. 2019. p. 533 - 538 https://doi.org/10.5071/27thEUBCE2019-2BO.6.5

External Link Details

Sustainable technologies can hardly compete with fossil-based technologies in terms of economic efficiency. One sustainable technology with special relevance due to its wide range of application and industrial readiness is biomass gasification using a dual fluidized bed (DFB). The economic challenges of a DFB gasification plant are addressed without constructional measures by adapting a current control strategy. This paper proposes a model-based control strategy aiming for increased economic efficiency of a DFB gasification plant considering exemplarily the “HGA Senden” in Ulm, Germany. A process analysis reveals high potential for improvement at the current control strategy for the synchronization of product gas production and utilization. A significant surplus of product gas is burned in an auxiliary boiler just for synchronization, and regular manual adjustments by the plant operators at the fuel feed are necessary. The model-based control strategy synchronizes by actuating the auxiliary boiler and the fuel feed simultaneously. The model-based control strategy is experimentally validated for over one month at the “HGA Senden” proofing a significant increase in economic efficiency. So, the economic efficiency of this technology for the sustainable production of energy and products is increased by model-based control.

Conference presentations and posters | 2019

Influence of fuel ash and bed material on the water-gas-shift equilibrium in DFB steam gasification

Fürsatz K, Fuchs J, Bartik A, Kuba M, Hofbauer H. Influence of fuel ash and bed material on the water-gas-shift equilibrium in DFB steam gasification. ICPS 2019.

External Link Details

The bed material chosen for dual fluidized bed steam gasification has an important effect on the performance of gasification. Depending on their characteristics and properties, bed materials can have either a higher or lower catalytic activity, which influences the product gas composition as well as the tar content in the product gas. More catalytically active bed materials, like limestone and olivine, improve the quality of the product gas by e.g. promoting the water-gas-shift reaction and tar reforming reaction. The layers formed on the bed material are another aspect influencing the product gas composition. These layers are formed by the interaction of bed material and fuel ash. The deviation from the water-gas-shift equilibrium was chosen to quantify the effect of several bed materials and ash layers on the catalytic activity. The bed materials tested were K-feldspar, limestone, and activated olivine, while the used fuels were softwood, chicken manure, a bark – chicken manure mixture, and a bark –straw – chicken manure mixture. The performed experiments showed that an increased catalytic activity can be achieved by either using a catalytically active bed materials or ash-rich fuels.

 

Peer reviewed papers | 2019

Input data reduction for microgrid sizing and energy cost modeling: Representative days and demand charges

Fahy K, Stadler M, Pecenak ZK, Kleissl J. Input data reduction for microgrid sizing and energy cost modeling: Representative days and demand charges. Journal of Renewable and Sustainable Energy. 2019.11:065301

External Link Details

Computational time in optimization models scales with the number of time steps. To save time, solver time resolution can be reduced and input data can be down-sampled into representative periods such as one or a few representative days per month. However, such data reduction can come at the expense of solution accuracy. In this work, the impact of reduction of input data is systematically isolated considering an optimization which solves an energy system using representative days. A new data reduction method aggregates annual hourly demand data into representative days which preserve demand peaks in the original profiles. The proposed data reduction approach is tested on a real energy system and real annual hourly demand data where the system is optimized to minimize total annual costs. Compared to the full-resolution optimization of the energy system, the total annual energy cost error is found to be equal or less than 0.22% when peaks in customer demand are preserved. Errors are significantly larger for reduction methods that do not preserve peak demand. Solar photovoltaic data reduction effects are also analyzed. This paper demonstrates a need for data reduction methods which consider demand peaks explicitly.

 

Peer reviewed papers | 2019

Interrelation of Volatile Organic Compounds and Sensory Properties of Alternative and Torrefied Wood Pellets

Poellinger-Zierler B, Sedlmayer I, Reinisch C, Hofbauer H, Schmidl C, Kolb LP, Wopienka E, Leitner E, Siegmund B. Interrelation of Volatile Organic Compounds and Sensory Properties of Alternative and Torrefied Wood Pellets. energy & fuels 2019.33:5270-5281.

External Link Details

The increasing demand for wood pellets on the market, which is caused by their excellent combustion properties, inspires the production as well as the utilization of alternative biomass pellets as fuel. However, the emission of volatile organic compounds gives pellet materials a distinct odor or off-odor, which is directly perceived by the end user. Thus, there is an urgent need for knowledge about the emitted volatile organic compounds and their potential formation pathways as well as their contributions to odor properties of the pellets. In this study, pellets made of biomass energy crops (i.e., straw or miscanthus), byproducts from the food industry (i.e., rapeseed, grapevine, or DDGS (dried distillers grains with solubles from beer production)), or eucalyptus, as well as torrefied pinewood and torrefied sprucewood were investigated with respect to the emitted volatile compounds and their possible impact on the pellet odor. Headspace solid-phase microextraction in combination with gas chromatography–mass spectrometry was used to enrich, separate, and identify the compounds. Techniques used in sensory science were applied to obtain information about the odor properties of the samples. A total of 59 volatile compounds (acids, aldehydes and ketones, alcohols, terpenes, heterocyclic compounds, and phenolic compounds) were identified with different compound ratios in the investigated materials. The use of multivariate statistical data analysis provided deep insight into product–compound interrelation. For pellets produced from bioenergy crops, as well as from byproducts from the food industry, the sensory properties of the pellets reflected the odor properties of the raw material. With respect to the volatiles from torrefied pellets, those volatiles that are formed during the torrefaction procedure dominate the odor of the torrefied pellets covering the genuine odor of the utilized wood. The results of this work serve as a substantiated basis for future production of pellets from alternative raw materials.

Reports | 2019

Langzeitvalidierung eines neuen Ansatzes zur CO-Lambda-Optimierung

Zemann C, Gölles M. Langzeitvalidierung eines neuen Ansatzes zur CO-Lambda-Optimierung. 2019.

Download PDF Details
Peer reviewed papers | 2019

Layer formation mechanism of K-feldspar in bubbling fluidized bed combustion of phosphorus-lean and phosphorus-rich residual biomass.

Wagner K, Häggström G, Skoglund N, Priscak J, Kuba M, Öhman M, Hofbauer H. Layer formation mechanism of K-feldspar in bubbling fluidized bed combustion of phosphorus-lean and phosphorus-rich residual biomass. Applied Energy 2019.248:545-554.

External Link Details

The use of phosphorus-rich fuels in fluidized bed combustion is one probable way to support both heat and power production and phosphorus recovery. Ash is accumulated in the bed during combustion and interacts with the bed material to form layers and/or agglomerates, possibly removing phosphorus from the bed ash fraction. To further deepen the knowledge about the difference in the mechanisms behind the ash chemistry of phosphorus-lean and phosphorus-rich fuels, experiments in a 5 kW bench-scale-fluidized bed test-rig with K-feldspar as the bed material were conducted with bark, wheat straw, chicken manure, and chicken manure admixtures to bark and straw. Bed material samples were collected and studied for layer formation and agglomeration phenomena by scanning electron microscopy combined with energy dispersive X-ray spectrometry. The admixture of phosphorus-rich chicken manure to bark changed the layer formation mechanism, shifting the chemistry to the formation of phosphates rather than silicates. The admixture of chicken manure to straw reduced the ash melting and agglomeration risk, making it possible to increase the time until defluidization of the fluidized bed occurred. The results also highlight that an increased ash content does not necessarily lead to more ash melting related problems if the ash melting temperature is high enough.

Peer reviewed papers | 2019

Layer Formation on Feldspar Bed Particles during Indirect Gasification of Wood Part 1: K-Feldspar

Faust R, Hannl T K, Berdugo Vilches T, Kuba M, Öhmann M, Seemann M C, Knutsson P Layer Formation on Feldspar Bed Particles during Indirect Gasification of Wood Part 1: K-Feldspar.Energy&Fuels 2019.33:8:7321-7332

External Link Details

The choice of bed material for biomass gasification plays a crucial role for the overall efficiency of the process. Olivine is the material conventionally used for biomass gasification due to the observed activity of olivine toward cracking of unwanted tars. Despite its catalytic activity, olivine contains high levels of chromium, which complicates the deposition of used bed material. Feldspar has shown the same activity as olivine when used as a bed material in biomass gasification. As opposed to olivine, feldspar does not contain environmentally hazardous compounds, which makes it a preferred alternative for further applications. The interaction of bed material and ash heavily influences the properties of the bed material. In the present study interactions between feldspar and main ash compounds of woody biomass in an indirect gasification system were investigated. Bed material samples were collected at different time intervals and analyzed with SEM-EDS and XRD. The obtained analysis results were then compared to thermodynamic models. The performed study was divided in two parts: in part 1 (the present paper), K-rich feldspar was investigated, whereas Na-rich feldspar is presented in part 2 of the study (DOI: 10.1021/acs.energyfuels.9b01291). From the material analysis performed, it can be seen that, as a result of the bed materials’ interactions with the formed ash compounds, the latter were first deposited on the surface of the K-feldspar particles and later resulted in the formation of Ca- and Mg-rich layers. The Ca enriched in the layers further reacted with the feldspar, which led to its diffusion into the particles and the formation of CaSiO3 and KAlSiO4. Contrary to Ca, Mg did not react with the feldspar and remained on the surface of the particles, where it was found as Mg- or Ca-Mg-silicates. As a result of the described interactions, layer separation was noted after 51 h with an outer Mg-rich layer and an inner Ca-rich layer. Due to the development of the Ca- and Mg-rich layers and the bed material–ash interactions, crack formation was observed on the particles’ surfaces.

Peer reviewed papers | 2019

Layer Formation on Feldspar Bed Particles during Indirect Gasification of Wood. 1. K-Feldspar

Faust R, Hannl TK, Berdugo Vilches T Kuba M, Öhman M, Seemann M, Knutsson P. Layer Formation on Feldspar Bed Particles during Indirect Gasification of Wood. 1. K-Feldspar. Energy and Fuels 2019.33:7321-7332.

External Link Details

The choice of bed material for biomass gasification plays a crucial role for the overall efficiency of the process. Olivine is the material conventionally used for biomass gasification due to the observed activity of olivine toward cracking of unwanted tars. Despite its catalytic activity, olivine contains high levels of chromium, which complicates the deposition of used bed material. Feldspar has shown the same activity as olivine when used as a bed material in biomass gasification. As opposed to olivine, feldspar does not contain environmentally hazardous compounds, which makes it a preferred alternative for further applications. The interaction of bed material and ash heavily influences the properties of the bed material. In the present study interactions between feldspar and main ash compounds of woody biomass in an indirect gasification system were investigated. Bed material samples were collected at different time intervals and analyzed with SEM-EDS and XRD. The obtained analysis results were then compared to thermodynamic models. The performed study was divided in two parts: in part 1 (the present paper), K-rich feldspar was investigated, whereas Na-rich feldspar is presented in part 2 of the study (DOI: 10.1021/acs.energyfuels.9b01291). From the material analysis performed, it can be seen that, as a result of the bed materials’ interactions with the formed ash compounds, the latter were first deposited on the surface of the K-feldspar particles and later resulted in the formation of Ca- and Mg-rich layers. The Ca enriched in the layers further reacted with the feldspar, which led to its diffusion into the particles and the formation of CaSiO3 and KAlSiO4. Contrary to Ca, Mg did not react with the feldspar and remained on the surface of the particles, where it was found as Mg- or Ca-Mg-silicates. As a result of the described interactions, layer separation was noted after 51 h with an outer Mg-rich layer and an inner Ca-rich layer. Due to the development of the Ca- and Mg-rich layers and the bed material–ash interactions, crack formation was observed on the particles’ surfaces.

Peer reviewed papers | 2019

Layer Formation on Feldspar Bed Particles during Indirect Gasification of Wood. 2. Na-Feldspar

Hannl TK, Faust R, Kuba M, Knutsson P, Berdugo Vilches T, Seemann MC, Öhman M. Layer Formation on Feldspar Bed Particles during Indirect Gasification of Wood Part 2: Na-Feldspar. Energy and Fuels 2019.33:7333-7346.

External Link Details

Selecting a suitable bed material for the thermochemical conversion of a specific feedstock in a fluidized bed system requires identification of the characteristics of potential bed materials. An essential part of these characteristics is the interaction of the bed material with feedstock ash in a fluidized bed, which leads to layer formation and morphology changes. For this purpose, the interaction of feldspar bed material with the main ash-forming elements in wood ash (Ca, K, Mg, Si) in an indirect gasification system was analyzed using SEM-EDS, XRD, and thermodynamic modeling. In part 1 of this work (DOI: 10.1021/acs.energyfuels.9b01291), the layer formation on K-feldspar dominated by Ca reaction and ash deposition was investigated. The aim of this second part of the work was to determine the time-dependent layer formation on Na-feldspar and compare the results with the findings for K-feldspar. Interaction of Na-feldspar with ash-derived elements resulted in different layers on Na-feldspar: K reaction layers, where K replaced Na and Si shares decreased; Ca reaction layers, where Ca enriched and reacted with the Na-feldspar; and ash deposition layers, where wood ash elements accumulated on the surface. Ca reaction layers were formed first and became continuous on the surface before K reaction layers and ash deposition layers were detected. Cracks and crack layer formation in the Na-feldspar particles were found after several days of operation. The layer compositions and growth rates indicate that the diffusion of Ca and K plays an essential role in the formation of Ca reaction and K reaction layers. The reaction with Ca and the crack formation coincide with the interaction previously found for quartz and K-feldspar. In contrast to K-feldspar, Na-feldspar showed high potential for reaction with K. The findings indicate that the reaction of Na-feldspar with ash-derived K makes Na-feldspar a less stable bed material than K-feldspar during the thermochemical conversion of K-rich feedstocks in a fluidized bed system.

Peer reviewed papers | 2019

Layer formation on K-feldspar in fluidized bed combustion and gasification of bark and chicken manure

Wagner K, Häggström G, Mauerhofer AM, Kuba M, Skoglund N, Öhman M, Hofbauer H. Layer formation on K-feldspar in fluidized bed combustion and gasification of bark and chicken manure. Biomass and Bioenergy 2019.127:105251.

External Link Details

Understanding layer formation on bed materials used in fluidized beds is a key step for advances in the application of alternative fuels. Layers can be responsible for agglomeration-caused shut-downs but they can also improve the gas composition in fluidized bed gasification. Layers were observed on K-feldspar (KAlSi3O8) impurities originating from the combined heat and power plant Senden which applies the dual fluidized bed (DFB) steam gasification technology. Pure K-feldspar was therefore considered as alternative bed material in DFB steam gasification. Focusing on the interactions between fuel ash and bed material, K-feldspar was tested in combustion and DFB steam gasification atmospheres using different fuels, namely Ca-rich bark, Ca- and P-rich chicken manure, and an admixture of chicken manure to bark. The bed particle layers formed on the bed material surface were characterized using combined scanning electron microscopy and energy-dispersive X-ray spectroscopy; area mappings and line scans were carried out for all samples. The obtained data show no essential influence of operational mode on the layer-formation process. During the combustion and DFB steam gasification of Ca-rich bark, a layer rich in Ca formed while K was diffusing out of the layer. The use of Ca- and P-rich chicken manure inhibited the diffusion of K, and a layer rich in Ca and P formed. The addition of P to bark via chicken manure also changed the underlying layer-formation processes to reflect the same processes as observed for pure chicken manure.

Reports | 2019

Machbarkeitsuntersuchung Methan aus Biomasse

Download PDF Details

Im Rahmen dieser zusammenfassenden Machbarkeitsstudie werden Untersuchungen zum Biomassepotential in Österreich im Jahr 2050 sowie der Synthese von BioSNG auf Basis der Biomassewirbelschichtvergasung durchgeführt. Dabei werden verschiedene Vergasungsverfahren, welche durch den Reaktortyp charakterisiert sind, dargestellt. Bedingt durch das homogene Temperaturprofil, welches in einem Wirbelschichtvergaser gegeben ist und die dadurch gegebene einfache Regelbarkeit des Prozesses, stellt sich die Wirbelschicht als vorteilhaft im Vergleich zu Flugstromvergasern dar, welche durch das hohe Temperaturniveau einen höheren technischen Aufwand mit sich bringen und daher für Anlagen mit großen Brennstoffwärmeleistungen zu bevorzugen sind. In weiterer Folge wird auf den DFB Prozess und dessen Weiterentwicklung, den G-Volution Vergaser eingegangen, welcher den Vorteil eines größeren einzusetzenden Brennstoffspektrums aufweist.

Conference presentations and posters | 2019

Manufacturers' data vs. literature data - a comparison of LCI and LCA results for wood-burning residential heating systems

Rixrath D, Wartha C, Enigl E, Strasser C, Piringer G, Pali E. Manufacturers' data vs. literature data - a comparison of LCI and LCA results for wood-burning residential heating systems. SETAC 19 Conference (Poster). May 2019.

Download PDF Details
Peer reviewed papers | 2019

Mathematical model of Fischer-Tropsch synthesis using variable alpha-parameter to predict product distribution.

Filip L, Zámostný P, Rauch R. Mathematical model of Fischer-Tropsch synthesis using variable alpha-parameter to predict product distribution. Fuel 2019;243:603-609.

External Link Details

A mathematical model was developed based on data obtained on Fischer-Tropsch (FT) laboratory scale unit operated in steady state, belonging to BIOENERGY 2020+ GmbH, Austria to demonstrate alpha-parameter dependence on carbon number. The lab-scale unit processed the synthesis gas, obtained by the gasification of biomass (woodchips), to produce liquid fuels for transportation applications. The FT reaction took place in a slurry reactor filled with dispersed cobalt-based catalyst. The products were then separated by partial condensation depending on their boiling points. The final output of the FT laboratory scale unit comprised three product streams – wax, diesel and naphtha. The reaction and separation of products were simulated in Aspen Plus software. The mathematical model used kinetic description based on power-law rate equations. The modeled product selectivity was controlled using an alpha-parameter of the Anderson-Schulz-Flory distribution. Because of the significant deviation of products spectrum from typical Anderson-Schulz-Flory distribution, a modified description of reaction selectivity was developed. The description introduces variable alpha-parameter, dependent on number of carbon atoms in the reacting molecule. The mathematical model developed using MATLAB software considered the production of aliphatic paraffins having a number of carbon atoms from C1 to C60. The mathematical model of simulated lab-scale unit comprised an ideally mixed reactor RCSTR and three FLASH2 separators for the separation of desired products. The results from mathematical model were validated by a comparison with experimental results from FT lab-scale unit. The modified polynomial dependency of alpha-parameter on carbon number showed significantly better description of composition and amounts of FT products, especially for wax stream where the description using constant alpha led to enormous deviations. Such better prediction of composition and amounts of acquired products is important for evaluating efficiency of further upgrading the FT products to liquid fuel.

Conference presentations and posters | 2019

Microbial Production of Enzymes from Blood and Pulp Processing Waste Streams

Weiss R, Prall K, Neunteufel E, Ortner M, Guebitz G, Nyanhongo G. Microbial Production of Enzymes from Blood and Pulp Processing Waste Streams. 8th Congress of European Microbiologists (FEMS). July 2019.

Details
Peer reviewed papers | 2019

New experimental evaluation strategies regarding slag prediction of solid biofuels in pellet boilers

Schön C, Feldmeier S, Hartmann H, Schwabl M, Dahl J, Rathbauer J, Vega-Nieva D, Boman C, Öhman M, Burvall J. New experimental evaluation strategies regarding slag prediction of solid biofuels in pellet boilers. Energy & Fuels. 2019.33:11985-11995

External Link Details

Pellet boilers and pellet stoves are widely used for heat production. But in most cases, only specific wood pellets with a low ash content are approved due to the increased risk of slagging and limited deashing capacity. The ash fusion test (AFT), according to prCEN/TS 15370-1, is currently the only standard method for the prediction of slagging. This method is not feasible for all biomass fuel types, since sometimes the characteristic temperatures cannot be determined or the characteristic shapes do not occur for temperature determination. Furthermore, the method is costly and requires complex instrumental infrastructure. Hence, a demand for more expressive or more rapid methods to characterize slag formation potential of fuels is often claimed. Based on a literature study, four such laboratory test methods were chosen, partly adapted, and then experimentally investigated. These methods included thermal treatment of the fuel itself or the ashes of the fuel and were the rapid slag test, CIEMAT, the slag analyzer, and the newly developed pellet ash and slag sieving assessment (PASSA) method. Method performance was practically assessed using 14 different biomass fuel pellets, which were mainly from different assortments of wood, but also herbaceous or other nonwoody fuels. The results from the tests with these four alternative methods were evaluated by comparing to both results from standard AFT and results from full-scale combustion tests performed over a maximum of 24 h. Seven different pellet boilers were assessed, of which one boiler was used to apply all 14 test fuels. According to the granulometric ash analysis (i.e., the ratio of >1 mm-fraction toward total ash formed), the sensitivity of the new test methods to depict slagging phenomena at a suitable level of differentiation was assessed. Satisfactory conformity of the boiler ash assessment (reference) was found for both, the slag analyzer and the PASSA method. The latter may, in particular, be seen as a promising and relatively simple low-input procedure, which can provide more real-life oriented test results for fixed-bed combustion. The standardized AFT could, however, not sufficiently predict the degree of slag actually formed in the reference boiler, particularly when only wood fuels are regarded.

Peer reviewed papers | 2019

NPK 2.0: Introducing tensor decompositions to the kinetic analysis of gas–solid reactions

Birkelbach F, Deutsch M, Flegkas S, Winter F, Werner A. NPK 2.0: Introducing tensor decompositions to the kinetic analysis of gas–solid reactions. Int J Chem Kinet. 2019;1–11.

External Link Details

A method for deriving kinetic models of gas–solid reactions for reactor and process design is presented. It is based on the nonparametric kinetics (NPK) method and resolves many of its shortcomings by applying tensor rank‐1 approximation methods. With this method, it is possible to derive kinetic models based on the general kinetic equation from any combination of experiments without additional a priori assumptions. The most notable improvements over the original method are that it is computationally much simpler and that it is not limited to two variables. Two algorithms for computing the rank‐1 approximation as well as a tailored initialization method are presented, and their performance is assessed. Formulae for the variance estimation of the solution values are derived to improve the accuracy of the model identification and to provide a tool for diagnosing the quality of the kinetic model. The methods effectiveness and performance are assessed by applying it to a simulated data set. A Matlab implementation is available as Supporting Information.

Conference presentations and posters | 2019

Numerical simulation and experimental analysis of a novel small scale biomass grate firing system

Eßl M, Mehrabian R, Shiehnejad-Hesar A, Kelz J, Feldmeier S, Reiterer T, Anca-Couce A, Robert Scharler R. Numerical simulation and experimental analysis of a novel small scale biomass grate firing system. 27th European Biomass Conference & Exhibition (Poster). May 2019.

External Link Details

The presented grate firing system is a patented small scale screw burner, which is designed for high fuel flexibility. This work focuses on the numerical modelling of the boiler via CFD simulations. The in-house developed CFD models use an Euler – Lagrange approach to predict the thermal degradation of the fuel particles and the subsequent gas-phase reactions. The CFD models are validated with experimental data from a representative measurement campaign where the boiler is operated with softwood pellets and the composition of the flue gas is measured in the primary and secondary combustion zone as well as the boiler outlet. The simulation results agree well with the data acquired in the measurement campaigns.
Keywords: CFD, simulation, combustion, small scale application, wood pellet

 

Conference presentations and posters | 2019

Nutrient recovery by digestate processing

Drosg B, Fuchs W. Nutrient recovery by digestate processing. Second COASTAL Biogas conference (Roskilde, Denmark). Nov 2019.

Details
Other Publications | 2019

Optimization Based Design and Control of Distributed Energy Resources and Microgrids

Stalder M, Optimization Based Design and Control of Distributed Energy Resources and Microgrids. LetsCluster, Lighthouse Summit in the heart of Europe: Smart Energy Generation - Management - Optimization, Smart Home / Building, Interface to the Smart Grid, Microgrids, Electric Grid of the Future, Sector Linking, Graz, Österreich, 25 - 27 März 2019

Details

 

Peer reviewed papers | 2019

Overview obstacle maps for obstacle‐aware navigation of autonomous drones

Pestana J, Maurer M, Muschick D, Hofer M, Fraundorfer F. Overview obstacle maps for obstacle-aware navigation of autonomous drones. Journal of Field Robotics 2019.

External Link Details

Achieving the autonomous deployment of aerial robots in unknown outdoor environments using only onboard computation is a challenging task. In this study, we have developed a solution to demonstrate the feasibility of autonomously deploying drones in unknown outdoor environments, with the main capability of providing an obstacle map of the area of interest in a short period of time. We focus on use cases where no obstacle maps are available beforehand, for instance, in search and rescue scenarios, and on increasing the autonomy of drones in such situations. Our vision‐based mapping approach consists of two separate steps. First, the drone performs an overview flight at a safe altitude acquiring overlapping nadir images, while creating a high‐quality sparse map of the environment by using a state‐of‐the‐art photogrammetry method. Second, this map is georeferenced, densified by fitting a mesh model and converted into an Octomap obstacle map, which can be continuously updated while performing a task of interest near the ground or in the vicinity of objects. The generation of the overview obstacle map is performed in almost real time on the onboard computer of the drone, a map of size urn:x-wiley:15564959:media:rob21863:rob21863-math-0001 is created in urn:x-wiley:15564959:media:rob21863:rob21863-math-0002, therefore, with enough time remaining for the drone to execute other tasks inside the area of interest during the same flight. We evaluate quantitatively the accuracy of the acquired map and the characteristics of the planned trajectories. We further demonstrate experimentally the safe navigation of the drone in an area mapped with our proposed approach.

Other papers | 2019

Performance evaluation of an electrostatic precipitator in a small-scale biomass boiler by using different biomass feedstocks

Kelz J, Zemann C, Muschick D, Hofmeister G, Gölles M. & Retschitzegger S. Performance evaluation of an electrostatic precipitator in a small-scale biomass boiler by using different biomass feedstocks. Proceedings 27th European Biomass Conference and Exhibition, 27-31 May 2019, Lisbon, Portugal.1932-1938.

External Link Details

In order to evaluate the performance of an electrostatic precipitator (ESP), comprehensive test runs investigating both particulate matter (PM) and gaseous emissions were performed by using softwood pellets as well as alternative biomass feedstocks such as short rotation coppice (poplar) and biomass residues (maize). An ESP was directly integrated in a commercially available small-scale biomass boiler. Based on wet chemical analyses of the fuels, so-called fuel indexes were calculated to deliver primary information on the expected combustion behaviour. The overall aim was to determine appropriate operating conditions, to optimise combustion parameters in order to minimise PM and gaseous emissions as well as to inhibit ash related problems. This was done by an efficient combination of primary (air staging in combination with an innovative control system) and secondary measures (integration of an ESP) and showed an enormous potential for both, a stable plant operation and reduced PM emissions. Thus the findings provide the basis for developing a fuel flexible, low emission and highly efficient biomass boiler in the sector of small-scale combustion systems.

Other Publications | 2019

Pflanzenkohle-Design - Beeinflussung der Kohleeigenschaften durch gezielte Prozessführung in der Herstellung

Martini S. Pflanzenkohle-Design - Beeinflussung der Kohleeigenschaften durch gezielte Prozessführung in der Herstellung. Big Biochar Day No 3. September 2019.

Details
Peer reviewed papers | 2019

Photoautotrophic production of poly-hydroxybutyrate – First detailed cost estimations

Panuschka S, Drosg B, Ellersdorfer M, Meixner K, Fritz I. Photoautotrophic production of poly-hydroxybutyrate – First detailed cost estimations. Algal Research 2019.41:101558.

External Link Details

Political, economic and ecological reasons have recently been leading to efforts to replace fossil hydrocarbons and their products in a sustainable way. In order to replace fossil-based polymers, photoautotrophically produced polyhydroxybutryrates (PHBs), which are intracellular carbon storage products of nutrient-deprived microorganisms, seem to be a promising, biobased and biodegradable alternative. Although laboratory and pilot scale experiments have already been performed, no economic evaluation has been carried out so far. Consequently, valid claims on PHB production costs and the influence of different parameters, such as intracellular PHB-content, choice of cultivation system or location, cannot be made. In this study potential demonstration plants, equipped with different photoautotrophic cultivation systems and located at two sites, were designed to identify key parameters for a successful economic realization and implementation. Material and energy balances were determined to reveal specific PHB production costs for four different scenarios. Raw material and operating supply costs, expenditures for plant construction and operation as well as product amounts were determined using literature data for specified results from laboratory and pilot scale experiments. The lowest calculated PHB production price (24 € kg−1) accomplished in a thin-layer-system plant located in Southern Europe with 60% PHB-content of the produced biomass is significantly higher than the current market price of heterotrophically produced PHB. The most important cost factors in all scenarios are cultivation and harvesting costs accounting for 62 to 72% of the total specific production costs, followed by maintenance costs with a cost share of 11 to 14%. Therefore, the choice of a suitable cultivation system is the key driving factor for an economic PHB-production due to the currently high investment costs for photosynthetic biomass production systems. Specific production costs for a Southern compared to a Central European location amount to almost half of the costs.

Peer reviewed papers | 2019

Planning and implementation of bankable microgrids

Stadler M, Nasle A. Planning and implementation of bankable microgrids. The Electricity Journal 2019. 32:24-29.

External Link Details

Currently, many Microgrid projects remain financially uncertain and not bankable for institutional investors due to major challenges in existing planning and design methods that require multiple, complex steps and software tools.

Existing techniques treat every Microgrid project as a unique system, resulting in expensive, non-standardized approaches and implementations which cannot be compared. That is, it is not possible to correlate the results from different planning methods performed by different project developers and/or engineering companies.

This very expensive individual process cannot guarantee financial revenue streams, cannot be reliably audited, impedes pooling of multiple Microgrid projects into a financial asset class, nor does it allow for wide-spread and attractive Microgrid and Distributed Energy Resource projects deployment.

Thus, a reliable, integrated, and streamlined process is needed that guides the Microgrid developer and engineer through conceptual design, engineering, detailed electrical design, implementation, and operation in a standardized and data driven approach, creating reliable results and financial indicators that can be audited and repeated by investors and financers.

This article describes the steps and methods involved in creating bankable Microgrids by relying on an integrated Microgrid planning software approach that unifies proven technologies and tested planning methods, researched and developed by the United States National Laboratory System as well as the US Department of Energy, to reduce design times.

Conference presentations and posters | 2019

Practical example: manufacturers’ data vs data from ecoinvent database – a comparison of LCI and LCA

Rixrath D, Wartha C, Enigl M, Strasser C, Piringer G. Practical example: manufacturers’ data vs data from ecoinvent database – a comparison of LCI and LCA. 15. Minisymposium Verfahrenstechnik MU Leoben (Poster). 2019.

External Link Details

The aim of this work is to analyze biogenic residues and to test
them for their suitability as feedstocks for hydrothermal
liquefaction (HTL). Green waste, sewage sludge, micelles,
leftovers and organic waste were analyzed and tested. All
experiments were carried out in an autoclave at 350 °C with a
holding time of 15 minutes under an inert argon atmosphere. After
the experiments the yields of the gas, aqueous, biocrude and solid
phase were determined together with lipid contents, heating values
and elemental composition of the raw materials and biocrude
samples. Biocrude yields are of specific interest for a future
commercial use of the HTL-process. In this study we achieved
biocrude yields between 9.43% (green waste) and 34.28%
(leftovers).

Other Publications | 2019

Primäre und sekundäre Verbesserungen an einem Biomassekessel für Agrarbrennstoffe

Zemann C, Kelz J, Muschick D, Retschitzegger S, Gölles M. Primäre und sekundäre Verbesserungen an einem Biomassekessel für Agrarbrennstoffe. 10. Fachgespräch: Partikelabscheider in häuslichen Feuerungen. 20. März 2019 (2019). [online]. (Tagungsreader, 15). Leipzig: DBFZ. 168 S.

External Link Download PDF Details

ie Biomasseverbrennung spielt eine zentrale Rolle bei der Bereitstellung von Wärme aus erneuerbaren Energieträgern. Konventionelle Biomasse-Brennstoffe werden jedoch aufgrund einer steigenden Anzahl stofflicher Verwertungsmöglichkeiten, wie z.B. der Umwandlung in Chemikalien, teurer und schwieriger zugänglich. Agrarbrennstoffe, die bisher nur selten oder gar nicht in Biomasse-Kleinfeuerungen eingesetzt wurden, stellen eine vielversprechende Alternative zu konventionellen Brennstoffen dar. Diese Agrarbrennstoffe, wie zum Beispiel Kurzumtrieb, Maisspindeln oder Stroh sind kostengünstig und in ausreichender Menge vorhanden. Der Einsatz von Agrarbrennstoffen in konventionellen Biomasse-Kleinfeuerungen ist jedoch aufgrund stark variierender Brennstoffeigenschaften mit erhöhten Anforderungen an das Verbrennungssystem verbunden. Erhöhte N, S, Cl, Alkalimetall- und Aschegehalte sowie niedrigere Aschenschmelzpunkte können zu aschebedingten Problemen (Ascheschmelze, Ascheablagerung und Korrosion) sowie erhöhten Konzentrationen von gasförmigen (CO, NOx, HCl und SOx) und partikelförmigen Emissionen bei der Verbrennung führen.

Ziel der in diesem Beitrag präsentierten Arbeiten war die Erhöhung die Brennstoffflexibilität einer handelsüblichen Biomasse-Kleinfeuerung um damit eine Verbrennung von Agrarbrennstoffen mit niedrigen Schadstoffemissionen und einem hohen Wirkungsgrad zu ermöglichen. Hierzu wurde eine modellbasierte Regelung entwickelt, welche insbesondere eine gezielte Einstellung des Luftverhältnisses in der Primärverbrennungszone ermöglicht und damit das Risiko der Ascheschmelze reduziert und Schadstoffmissionen verringert. Soft-Sensoren bestimmen relevante Brennstoffeigenschaften während des Betriebs, welche von der modellbasierten Regelung zur automatischen Anpassung an geänderte Brennstoffeigenschaften genutzt werden. Die modellbasierte Regelung wurde um eine CO-lambda-Optimierung ergänzt, welche auf Basis von Messwerten des Restsauerstoffgehalts und der CO-Emissionen den Wirkungsgrad der Verbrennung maximiert und gleichzeitig die Schadstoffemissionen verringert. Zur weiteren Verringerung von partikelförmigen Schadstoffemissionen wurde ein am Markt verfügbarer Elektrofilter adaptiert und nach dem Wärmeübertrager der Biomasse-Kleinfeuerung angebracht.

Dieses Verbrennungssystem wurde durch umfassende Testläufe mit begleitenden Emissionsmessungen sowie Brennstoff-, Staub- und Ascheanalysen bewertet. Der Einsatz der modellbasierten Regelung führte zu einem stabileren Betrieb bei allen Leistungen und für alle Brennstoffe. Der Elektrofilter zeigte sehr zufriedenstellende Abscheidegrade für alle untersuchten Brennstoffe und Anlagenleistungen. Dadurch konnte die Brennstoffflexibilität der handelsüblichen Biomasse-Kleinfeuerung erhöht und die Verbrennung von Agrarbrennstoffen ermöglicht werden.

 

Other papers | 2019

Real life emission factor assessment for biomass heating appliances at a field measurement campaign in Styria, Austria

Sturmlechner R, Schmidl C, Carlon E, Reichert G, Stressler H, Klauser F, Kelz J, Schwabl M, Kirchsteiger B, Kasper-Giebl A, Höftberger E, Haslinger W. Real life emission factor assessment for biomass heating appliances at a field measurement campaign in Styria, Austria. Air Pollution 2019 - 27th International Conference on Modelling, Monitoring and Management of Air Pollution, Aveiro (oral presentation). June 2019.

External Link Details

Biomass combustion is a major contributor to ambient air pollution. Thus, knowing the real-life emissions of biomass heating systems is crucial. Within the project Clean Air by biomass a field measurement campaign was conducted. 15 biomass heating appliances were tested in households at the end user according to their usual operation. Emission factors for gaseous and particulate emissions, as well as for the genotoxic and carcinogenic substance benzo(a)pyrene, were evaluated and compared to current proposed European and Austrian emission factors used for emission inventories. Moreover, the shares of particles and benzo(a)pyrene in hot and cooled flue gas were determined. Results showed a high variability of emissions in the field. Highest values and ranges occurred for room heaters (TSPtotal: 226 mg/MJ). Biomass boilers showed clearly lower emission factors (TSPtotal: 184 mg/MJ) in the field than room heaters and also than the proposed European and Austrian emission factors, in many cases. Emission factors for tiled stoves showed a similar trend (TSPtotal: 67 mg/MJ). The share of condensable particles in the flue gas was remarkable. Especially benzo(a)pyrene was found mostly in the condensable fraction of the particles.

Peer reviewed papers | 2019

Real-life emission factor assessment for biomass heating appliances at a field measurement campaign in Styria, Austria

Sturmlechner R, Schmidl C, Carlon E, Reichert G, Stressler H, Klauser F, Kelz J, Schwabl M, Kirchsteiger B, Kasper-Giebl A, Höftberger E, Haslinger W. Real-life emission factor assessment for biomass heating appliances at a field measurement campaign in Styria, Austria. WIT Transactions on Ecology and the Environment 2019.236:221-231

External Link Download PDF Details

Biomass combustion is a major contributor to ambient air pollution. Thus, knowing the real-life emissions of biomass heating systems is crucial. Within the project Clean Air by biomass a field measurement campaign was conducted. 15 biomass heating appliances were tested in households at the end user according to their usual operation. Emission factors for gaseous and particulate emissions, as well as for the genotoxic and carcinogenic substance benzo(a)pyrene, were evaluated and compared to current proposed European and Austrian emission factors used for emission inventories. Moreover, the shares of particles and benzo(a)pyrene in hot and cooled flue gas were determined. Results showed a high variability of emissions in the field. Highest values and ranges occurred for room heaters (TSPtotal: 226 mg/MJ). Biomass boilers showed clearly lower emission factors (TSPtotal: 184 mg/MJ) in the field than room heaters and also than the proposed European and Austrian emission factors, in many cases. Emission factors for tiled stoves showed a similar trend (TSPtotal: 67 mg/MJ). The share of condensable particles in the flue gas was remarkable. Especially benzo(a)pyrene was found mostly in the condensable fraction of the particles.

Conference presentations and posters | 2019

Reduction of ash-realted problems in large-scale biomass combustion systems via resource efficient low-cost fuel additives

Sommersacher P, Kienzl N, Retschitzegger S. Reduction of ash-realted problems in large-scale biomass combustion systems via resource efficient low-cost fuel additives. 27th European Biomass Conference & Exhibition (Poster). 2019.

External Link Details

The incineration of waste wood is very often associated with ash-related problems (deposits, slagging and corrosion). This leads to short maintenance intervals, which result in significant power generation losses and high downtime costs. To avoid these problems, additives can be used, with particularly cost-effective additives being of great interest. Based on pre-evaluations, the addition of 2% gypsum and 3% coal fly ash was recommended, since an improved ash melting behaviour and reduced risk for high-temperature corrosion can be expected with addition of gypsum and coal fly ash. These additives with the recommended mixing rates were then investigated in a large-scale plant. Extensive investigations were carried out without additive (as a reference), and with the additives focusing on dust formation (aerosols and total dust), deposit formation and the corrosion behaviour of superheaters. These investigations were accompanied by fuel and ash analyses (grate, cyclone and filter). The addition of additives increased the amount of total dust in the flue gas up to 195% and 262% for gypsum and coal fly ash respectively. The chemical analysis of the total dust showed an enrichment of refectory species like Al for coal fly ash and Ca and Mg for gypsum which can positively influence the slagging behaviour. Aerosol measurements showed that the addition of coal fly ash minimised the amount of fine particulate matter, as less alkali metals (K and Na) were released into the gas phase. Gypsum addition increases the SO2 concentrations in the gas phase due to the decomposition of gypsum, as in the combustion chamber about 900°C are present. Due to the preferred sulphation reactions (binding of S to alkali metals) less Cl is bound to alkali metals and therefore the Cl concentrations in the aerosols were lower compared to the reference case. This effect was also found in the deposits sampled at the position of the superheater. Based on the chemical composition of deposits the molar 2S/Cl ratios were determined, which can be used to predict the risk for high temperature corrosion. The analysis data showed that an improvement concerning the high temperature corrosion risk is possible by adding coal fly ash, whereas a significant improvement in case of gypsum additions seems very likely. The measurements carried out so far showed the influence (built-up rate, chemical composition etc.) of the additive application on ash fractions, deposits and dusts. By taking a closer look at the change in chemical compositions of dusts and deposits, additives with an appropriate additivation ratio can be suggested. In case of coal fly ash 3% and in case of gypsum 1% additive related to dry fuel seems to be adequate additive ratios to positively influence the risk of high temperature corrosion and reduce the slagging behaviour.

Other Publications | 2019

Regelungstechnische Maßnahmen zur Verringerung der Schadstoffemissionen automatisch beschickter Biomassekleinfeuerungen

Zemann C, Gölles M. Regelungstechnische Maßnahmen zur Verringerung der Schadstoffemissionen automatisch beschickter Biomassekleinfeuerungen. 8. Fachkolloquium: Innovative und selbstüberwachende Verbrennungs- und Abgasbehandlungstechnologien zum Einsatz in Biomassefeuerungen. May 2019

Details
Peer reviewed papers | 2019

Single large wood log conversion in a stove: Experiments and modelling

Anca-Couce A, Caposciutti G, Gruber T, Kelz J, Bauer T, Hochenauer C, Scharler R. Single large wood log conversion in a stove: Experiments and modelling. Renewable Energy 2019.143:890-897.

External Link Details

Natural draft wood log stoves for residential bioheat production are very popular due to the low fuel costs, the ecological aspect of a renewable energy source and the visual appeal of the flame. However, they have rather high pollutant emissions, specially of unburnt products. The description of large wood logs conversion in stoves needs to be improved to allow a process optimization which can reduce these emissions. The transient conversion of a single wood log in a stove is experimentally investigated with test runs quenching the log after defined time intervals and measuring the flue gas composition and temperatures in the log and stove. The experiments have been described with a volumetric single particle model, which predicts with good accuracy the log conversion until a time of around 30 min, when pyrolysis is almost ending. At that point, log fragmentation takes place and smaller fragments are detached from the log falling onto the bed of embers. Despite the increase in external surface area, char oxidation takes place at a moderate rate. This last stage of wood log conversion in a stove is the most challenging to model. Finally, preliminary recommendations are provided for reducing CO emissions in wood log stoves.

Conference presentations and posters | 2019

Smart Logwood Boiler - A holistic approach for improving the efficiency of residential heating systems. 27th European Biomass Conference & Exhibition.

Zemann C, Deutsch M, Zlabinger S, Hofmeister G, Gölles M, Horn M. Smart Logwood Boiler - A holistic approach for improving the efficiency of residential heating systems. 27th European Biomass Conference & Exhibition. Lisbon. 2019. (Oral presentation, 27.05.2019).

Details
Conference presentations and posters | 2019

Smart Logwood Boiler – A holistic approach for improving the efficiency of residential heating systems

Zemann C, Deutsch M, Zlabinger S, Hofmeister G, Gölles M, Horn M. Smart Logwood Boiler – A holistic approach for improving the efficiency of residential heating systems. 27th European Biomass Conference & Exhibition (Oral Presentation). May 2019.

Details
Conference presentations and posters | 2019

Spectroscopic in situ methods for the evaluation of the active centers on ash-layered bed materials from gasification in a fluidized bed reactor

Chlebda D, Aziaba K, Janisch D, Kuba M, Hofbauer H, Łojewska J. Spectroscopic in situ methods for the evaluation of the active centers on ash-layered bed materials from gasification in a fluidized bed reactor. ICPS 2019

Details
PhD Thesis | 2019

Synchronization of product gas generation and its utilization in industrial dual fluidized bed gasification plants

Nigitz T, Gölles M, Aichernig C, Hofbauer H, Horn, M. Synchronization of the gas production and utilization rates of a solid-to-gas process and a downstream gas-to-X process. 21. Styrian Workshop on Automatic Control. 10 September 2019. Leitring/Wagna, Austria. (oral presentation)

Details
Reports | 2019

Technological expertise for biomass-based heat, power and transport fuels

Bacovsky D. Technological expertise for biomass-based heat, power and transport fuels. Bioenergy in Austria. October 2019.

External Link Details
Conference presentations and posters | 2019

Technology mapping of market-available small-scale combustion appliances

Feldmeier S, Wopienka E, Schwarz M, Pfeifer C. Technology mapping of market-available small-scale combustion appliances. 27th European Biomass Conference & Exhibition (Poster). 2019.

External Link Details

A broad range of different biomass combustion appliances dedicated to domestic heating is available on the market. Depending on the technology the impact of varying properties of biomass fuels on slag formation and emission release may vary. Aspects as the design of the grate section and the selection of individual boiler components as well as operational settings determine the applicability of biomass fuels. Apart from fuel properties also the fuel load on the grate, residence time, air distribution and geometry of grate and combustion chamber affect the degree of slag formation and emission release. Technology indexes determined by means of constructional measures enable a systematic comparison and – in a further step – an assessment of combustion appliances. In this work specific technology indexes were specified and applied to compare technological aspects, which will prospectively allow investigating the technological influence on the combustion performance.

Reports | 2019

Thermal Gasification of low-grade residuals for the production of valuable products and energy

Wagner K, Kuba M, Fuchs J, Müller S. Thermal Gasification of low-grade residuals for the production of valuable products and energy. Publishable final report. June 2019.

Details
Conference presentations and posters | 2019

Thermal Trouble: Challenges in Optimization and Evaluation of Thermal Energy Systems

Lichtenegger K, Unterberger V, Stadler M, Zellinger M, Carreras F, Moser A. Thermal Trouble: Challenges in Optimization and Evaluation of Thermal Energy Systems. IAPE 2019 : International Conference on Innovative Applied Energy (oral presentation). March 2019.

Details
Conference presentations and posters | 2019

Time-dependent catalytic activation of inactive k-feldspar by layer formation during fluidized bed conversion with residual fuels

Wagner C, Hammerl C, Kuba M, Hofbauer H. Time-dependent catalytic activation of inactive k-feldspar by layer formation during fluidized bed conversion with residual fuels. 27th European Biomass Conference & Exhibition (Poster). May 2019.

External Link Download PDF Details

Olivine is currently used as bed material in dual fluidized bed steam gasification due to its catalytic activity towards the water-gas-shift (WGS) reaction and tar reforming. However, olivine contains traces of heavy metals which necessitate an expensive disposal of the accruing ash. The study of alternative bed materials for DFB steam gasification is therefore of major importance. The activity of a bed material is one important factor when classifying its suitability. Several alternative bed materials like quartz and K-feldspar are non-active when fresh but become activated during operation by interaction with the ash by forming layers. The focus of this work was therefore to quantify the initial activation of K-feldspar over the first operational hours as exemplary inactive bed material. Bed material samples from fluidized bed combustion were collected during operation. The fuels used were bark, chicken manure and a bark/chicken manure mixture. The obtained samples were sieved to 200 – 250 µm and tested in a micro-scale test-rig regarding the WGS reaction. A time-dependent activation of K-feldspar was observed marking a first step in better understanding the activation of bed materials.

Conference presentations and posters | 2019

Towards the in house production of enzymes using processing waste

Weiss R, Nyanhongo G, Ortner M, Guebitz G.Towards the in house production of enzymes using processing waste. 15th International Conference on Renewable Resources and Biorefineries, Toulouse, FRANCE. June 2019.

Details
Conference presentations and posters | 2020

"Long-term verification of a new modular method for CO-lambda-optimisation"

Zemann C, Hammer F, Gölles M. Long-term verification of a new modular method for CO-lambda-optimisation. 6th Central European Biomass Conference CEBC 2020 (Oral Presentation). 2020.

Details
Peer reviewed papers | 2020

A MILP-based modular energy management system for urban multi-energy systems: Performance and sensitivity analysis

Moser AGC, Muschick D, Gölles M, Nageler PJ, Schranzhofer H, Mach T et al. A MILP-based modular energy management system for urban multi-energy systems: Performance and sensitivity analysis. Applied Energy. 2020;2020(261). 114342.

External Link Details

The continuous increase of (volatile) renewable energy production and the coupling of different energy sectors such as heating, cooling and electricity have significantly increased the complexity of urban energy systems. Such multi-energy systems (MES) can be operated more efficiently with the aid of optimization-based energy management systems (EMS). However, most existing EMS are tailor-made for one specific system or class of systems, i.e. are not generally applicable. Furthermore, only limited information on the actual savings potential of the usage of an EMS under realistic conditions is available. Therefore, this paper presents a novel modular modeling approach for an EMS for urban MES, which also enables the modeling of complex system configurations. To assess the actual savings potential of the proposed EMS, a comprehensive case study was carried out. In the course of this the influence of different user behavior, changing climatic conditions and forecast errors on the savings potential was analyzed by comparing it with a conventional control strategy. The results showed that using the proposed EMS in conjunction with supplementary system components (thermal energy storage and battery) an annual cost savings potential of between 3 and 6% could be achieved.

Conference presentations and posters | 2020

A modular energy management system for multi-energy systems

Muschick D, Kaisermayer V, Moser A, Gölles M. A modular energy management system for multi-energy systems. 6th Central European Biomass Conference, 22-24 January 2020, Graz.

Download PDF Details
Peer reviewed papers | 2020

A novel production route and process optimization of biomass-derived paraffin wax for pharmaceutical application

Gruber H, Lindner L, Arlt S, Reichhold A, Rauch R, Weber G, Trimbach J, Hofbauer H. A novel production route and process optimization of biomass-derived paraffin wax for pharmaceutical application. Journal of Cleaner Production. 2020;275:124135

External Link Details

The Biomass to Liquid (BtL) Fischer-Tropsch (FT) route converts lignocellulosic feedstock to renewable hydrocarbons. This, paper shows a novel production route for biomass-derived synthetic paraffin wax via gasification of lignocellulosic feedstock, Fischer-Tropsch synthesis (FTS) and hydrofining. The Fischer-Tropsch wax was fractionated, refined and analyzed with respect to compliance to commercial standards. The fractioned paraffin waxes were hydrofined using a commercial sulfide NiMo–Al2O3 catalyst and a trickle bed reactor. A parametric variation was performed to optimize the hydrofining process. It was shown that the produced medium-melt paraffin wax could fulfill the requirements for “Paraffinum solidum” defined by the European Pharmacopoeia (Ph. Eur). The high-melt wax fraction showed potential to be used as food packaging additive. Furthermore, the renewable wax was analyzed regarding PAH content and it was shown that the hydrofined wax was quasi-PAH-free.

Conference presentations and posters | 2020

Advanced biomass CCHP (BIO-CCHP) based on gasification, SOFC and cooling machines

Lagler J, Martini S. Advanced biomass CCHP (BIO-CCHP) based on gasification, SOFC and cooling machines. 6th Central European Biomass Conferenc, 2020, Graz.

Download PDF Details
Other papers | 2020

Advanced modular process analysis tool for biomass-based Chemical Looping systems

Steiner T, Schulze K, Scharler R. Advanced modular process analysis tool for biomass-based Chemical Looping systems. 3RD DOCTORAL COLLOQUIUM BIOENERGY. 2020.

External Link Details

In order to limit global warming to 1.5 °C compared to the pre-industrial temperature level, zero net CO2 emissions are needed on a global scale until 2050. A Chemical Looping (CL) process represents a technological system which is CO2-negative when using biomass as fuel and thus can substantially contribute to this target. In principle, the process uses a metal oxide as oxygen carrier material (OC) which is cyclically oxidized by air or steam and reduced by the fuel. Without air as the direct oxygen source for fuel conversion, high calorific product gases or pure carbon dioxide in case of combustion are obtained after the condensation of water vapor, which can then be stored or further utilized.
Within the funded project ”BIO-LOOP”, different Chemical Looping processes (for example combustion, gasification, hydrogen production) and reactors (fixed bed, fluidized bed) are investigated numerically and experimentally. An advanced process analysis tool based on mass and energy balances of the system considered will be presented. It provides data about the specific internal and external streams, process conditions and efficiencies. Within the analysis tool, various independent modular units describe individual process steps, e.g. mixing, chemical reaction or splitting. These components can be adjusted, combined and interconnected according to the flow chart of the system. The process model represents the first step towards a flexible Chemical Looping reactor simulation toolbox to analyze various process scenarios. Emphasis is put on the flexibility regarding the fuels and oxygen carriers, their conversion and possible process variations. The tool developed will support upcoming CFD modeling and further economic considerations.

Conference presentations and posters | 2020

Advanced Test Methods for Pellet Stoves

Reichert G, Schmidl C. Advanced Test Methods for Pellet Stoves. 6th Central European Biomass Conference, 2020, Graz.

Download PDF Details
Conference presentations and posters | 2020

Advanced Test Methods for Pellet Stoves – A Technical Review

Reichert G, Schwabl M, Schmidl C. Advanced Test Methods for Pellet Stoves – A Technical Review. 6th Central European Biomass Conference (oral presentation) 2020.

External Link Download PDF Details

Third party testing of direct heating appliances fueled with pellets has been established in many countries worldwide. The main goals are ensuring operation safety and a minimum level of performance of the products prior to market implementation. This kind of approval procedure for new products requires testing standards, certified testing bodies and a legal framework defining minimum requirements for specified performance parameters which are assessed in the respective standards.

While the overall targets are quite similar for all countries having set-up such procedures, the practical implementation of these targets in the national/international testing standards is remarkably different. This applies to both, the way of operating the appliance during the testing and the measurements performed during the testing.

Furthermore several industries were requested recently to modify their product standards towards more realistic operating conditions. The most famous example is car industry, but this request may also apply to biomass heating systems.

 

Peer reviewed papers | 2020

Alkaline Ethanol Oxidation Reaction on Carbon Supported Ternary PdNiBi Nanocatalyst using Modified Instant Reduction Synthesis Method

Cermenek B, Genorio B, Winter T, Wolf S, Connell JG, Roschger M, Letofsky-Papst I, Kienzl N, Bitschnau B, Hacker V. Alkaline Ethanol Oxidation Reaction on Carbon Supported Ternary PdNiBi Nanocatalyst using Modified Instant Reduction Synthesis Method. Electrocatalysis. 2020.11:203-204.

External Link Details

Direct ethanol fuel cells (DEFC) still lack active and efficient electrocatalysts for the alkaline ethanol oxidation reaction (EOR). In this work, a new instant reduction synthesis method was developed to prepare carbon supported ternary PdNiBi nanocatalysts with improved EOR activity. Synthesized catalysts were characterized with a variety of structural and compositional analysis techniques in order to correlate their morphology and surface chemistry with electrochemical performance. The modified instant reduction synthesis results in well-dispersed, spherical Pd85Ni10Bi5 nanoparticles on Vulcan XC72R support (Pd85Ni10Bi5/C(II-III)), with sizes ranging from 3.7 ± 0.8 to 4.7 ± 0.7 nm. On the other hand, the common instant reduction synthesis method leads to significantly agglomerated nanoparticles (Pd85Ni10Bi5/C(I)). EOR activity and stability of these three different carbon supported PdNiBi anode catalysts with a nominal atomic ratio of 85:10:5 were probed via cyclic voltammetry and chronoamperometry using the rotating disk electrode method. Pd85Ni10Bi5/C(II) showed the highest electrocatalytic activity (150 mA⋅cm−2; 2678 mA⋅mg−1) with low onset potential (0.207 V) for EOR in alkaline medium, as compared to a commercial Pd/C and to the other synthesized ternary nanocatalysts Pd85Ni10Bi5/C(I) and Pd85Ni10Bi5/C(III). This new synthesis approach provides a new avenue to developing efficient, carbon supported ternary nanocatalysts for future energy conversion devices.

Conference presentations and posters | 2020

Anaerobic Digestion Optimization for Biogas and Biomethane Production

Ionel I, Drosg B. Anaerobic Digestion Optimization for Biogas and Biomethane Production. 28th European Biomass Conference and Exhibition (oral presentation) 2020.

Details
Peer reviewed papers | 2020

Applicability of Torrefied Sunflower Husk Pellets in Small and Medium Scale Furnaces

Kienzl N, Margaritis N, Isemin R, Zaychenko V, Strasser C, Kourkoumpas DS, Grammelis P, Klimov D, Larina O, Sytchev G, Mikhalev A. Applicability of Torrefied Sunflower Husk Pellets in Small and Medium Scale. Waste and Biomass Valorization. 2020;275:122882.

External Link Details

The aim of this paper is to test the applicability of upgraded agricultural biomass feedstock such as torrefied sunflower husks during combustion in small and medium heating applications. Sunflower husk is formed in large quantities at enterprises producing sunflower oil and can be used as biofuel. However, big problems arise due to the low bulk density of husks and the rapid growth of ash deposits on the heating surfaces of boilers. In order to solve these problems, it was proposed to produce pellets from husks, and to subject these pellets to torrefaction. After torrefaction, net calorific value was increased by 29% while the risk of high temperature corrosion of boilers was reduced. Signs of ash softening neither occurred in combustion of raw nor in combustion of torrefied sunflower husk pellets. High aerosol emissions, already present in raw sunflower husk pellets, could not be mitigated by torrefaction. First combustion results at medium scale furnaces indicated that sunflower husk pellets (both raw and torrefied) in a commercial boiler < 400 kW, operated in a mode with low primary zone temperatures (< 850 °C), meet current emission limits. Regarding the future upcoming emission limits according to the European Medium Combustion Plant Directive, additional measures are required in order to comply with the dust limits.

Peer reviewed papers | 2020

Aqueous phase reforming of pilot-scale Fischer-Tropsch water effluent for sustainable hydrogen production

Zoppi G, Pipitone G, Gruber H, Weber G, Reichhold A, Pirone R, Bensaid S. Aqueous phase reforming of pilot-scale Fischer-Tropsch water effluent for sustainable hydrogen production. Catalysis Today.2020.

External Link Details

Fischer-Tropsch (FT) synthesis produces an aqueous stream containing light oxygenates as major by-product. The low carbon concentration of the organics makes its thermal recovery unprofitable. Thus, novel processes are needed to utilize this waste carbon content. In this work, the aqueous phase reforming of the wastewater obtained from a 15 kWth Fischer-Tropsch plant was explored as a promising process to produce hydrogen at mild temperatures. The FT product water was firstly characterized and afterward subjected to the reforming at different reaction temperatures and time, using a platinum catalyst supported on activated carbon. It was observed that, besides activity, the selectivity towards hydrogen was favored at higher temperatures; equally, increasing the reaction time allowed to obtain the total conversion of most molecules found in the solution, without decreasing the selectivity and reaching a plateau at 4 hours in the hydrogen productivity. In order to get more insights into the reaction mechanism and product distribution derived from the APR of FT product water, several tests were performed with single compounds, finding characteristic features. The importance of the position of the hydroxyl group in the molecule structure was highlighted, with secondary alcohols more prone to dehydrogenation pathways compared to primary alcohols. Moreover, no interference among the substrates was reported despite the mixture is constituted by several molecules: in fact, the results obtained with the real FT product water were analogous to the linear combination of the single compound tests. Finally, the reuse of the catalyst showed no appreciable deactivation phenomena.

Other Publications | 2020

Betrieb bei maximaler Effizienz und minimalen Emissionen durch CO-lambda-Optimierung

Zemann C, Hammer F, Gölles M. Betrieb bei maximaler Effizienz und minimalen Emissionen durch CO-lambda-Optimierung. Informationstag für Biomassegenossen-schaften Bildungshaus Sankt Magdalena. February 2020.

Details
Conference presentations and posters | 2020

BIOCHAR - Reaction kinetics under gasification conditions by experimental tests with TGA

Lagler J, Martini S, Kienzl N, Loder A. BIOCHAR - Reaction kinetics under gasification conditions by experimental tests with TGA. 6th Central European Biomass Conference. 2020. Graz.

Download PDF Details
Conference presentations and posters | 2020

Biochar’s reaction kinetics under gasification conditions by experimental tests with TGA

Lagler J, Martini S, Kienzl N, Loder A. Biochar’s reaction kinetics under gasification conditions by experimental tests with TGA. 6th Central European Biomass Conference (poster). 2020.

External Link Download PDF Details

During the last years biomass evolved into one of the most important energy sources in Central Europe. Depending on the atmosphere, different types of thermochemical processes can be differentiated: pyrolysis, gasification and combustion, whereas pyrolysis operates without any oxygen in the atmosphere, combustion with the highest ratio of oxygen. Depending on the conversion technology and conversion conditions, different products can be generated: heat, cooling power and electrical power, liquid, gaseous and solid products, such as hydrogen, FT-fuels and biochar.
This work focuses on the valorisation of solid side products of gasification based biomass CHP-systems to increase ecologic and economic benefit. Depending on the conversion process of biomass into producer gas this solid residue consists mainly of ash or of so called biochar with high carbon content. Increasing the amount of biochar leads to a decrease of producer gas, but, with the high market potential of biochar, the economic benefits increase. According to its characteristics (e.g. purity, surface structure) different applications can be addressed and therefore different prices can be achieved. Therefore, extended research on biochar treatment processes and related reaction kinetics of biochar is from crucial importance for the development and optimisation of downstream upgrading processes in order to reach the desired quality of the biochar. In the past, such considerations of utilising side products, like biochar, have not been in the centre of attention during the design phase of gasification reactors. Therefore, the establishment of a finishing-treatment of biochar extracted from a gasification process is under investigation. The focus of this paper lies on the reaction kinetics of biochar activation itself and not the primary material (biomass). In order to derivate correlations between reaction kinetics and atmosphere compositions as well as temperature, experimental test runs are conducted with a Thermogravimetric Analyser (TGA) including a steam furnace, which enables studies of mass and energy changes under defined absolute humidity. To produce applicable and reliable data, the limitations of the TGA-test-setup are evaluated with examinations on variations of sample mass, bulk density, particle size distribution and the gas flow. On this basis the test design is defined with certain specifications on the sample preparation and a constant flow velocity. The investigated biochar taken out the gasification process is dried, milled and sieved for the TGA-tests. The main part is devoted to conduct a detailed investigation changing the content of moisture (H2O) and carbon dioxide (CO2) as well as the temperature. The tests are operated at a temperature range between 700 and 1000°C, H2O-concentrations from 0 to 80 vol% and CO2-concentrations also in the range of 0 to 80 vol%. These systematic experimental variations provide the basis for a model of the reaction kinetics of biochar under different boundary conditions. The data is to be evaluated via the generic model including temperature and the partial pressures of CO2 and H2O. Afterwards it will be matched with conventional models (e.g. Arrhenius plot, linear regression models) to determine their suitability. One of those models was used in the paper of Ollero et al, where the influence of CO2 on the reaction kinetics of olive residue was investigated. 1First results show that the reaction rate of biochar is much lower than the one of olive residue. Effects of treatment conditions on the surface properties are investigated by taking out the treated samples after a defined treatment period at a defined mass loss and subsequent surface analysis (BET, pore size/volume distribution) of the samples. In first BET surface analysis, the treatments of biochar with vapour lead to a surface of approximately 1000m²/g whereas the original sample has a BET surface lower than 150m²/g. This finding leads to the question how the reaction kinetics of a treatment process influences the surface change. The obtained data is taken as basis for developing an upgrading process for biochar to a high value product of the gasification process. In order to prove the suitability of TGA-tests for identifying optimised treatment conditions, further research shall demonstrate the correlation of the lab-scale TGA-results with experiences of pilot scale tests.
 

Conference presentations and posters | 2020

Biofuels for transport decarbonisation Country specific assessment for Finland, Sweden, Germany, USA and Brazil

Matschegg D, Biofuels for transport decarbonisation Country specific assessment for Finland, Sweden, Germany, USA and Brazil. 6th Central European Biomass Conference, 22-24 January 2020, Graz.

Download PDF Details
Conference presentations and posters | 2020

Biological Methanation Processes

Drosg B, Wellinger A. Biological Methanation Processes. 28th European Biomass Conference and Exhibition (oral presentation) 2020.

Details
Peer reviewed papers | 2020

Biomass pyrolysis TGA assessment with an international round robin

Anca-Couce A, Tsekos C, Retschitzegger S, Zimbardi F, Funke A, Banks S, Kraia T, Marques P, Scharler R, de Jong W, Kienzl N. Biomass pyrolysis TGA assessment with an international round robin.Fuel.2020;276:118002.https://doi.org/10.1016/j.fuel.2020.118002

External Link Details

The large variations found in literature for the activation energy values of main biomass compounds (cellulose, hemicellulose and lignin) in pyrolysis TGA raise concerns regarding the reliability of both the experimental and the modelling side of the performed works. In this work, an international round robin has been conducted by 7 partners who performed TGA pyrolysis experiments of pure cellulose and beech wood at several heating rates. Deviations of around 20 – 30 kJ/mol were obtained in the activation energies of cellulose, hemicellulose and conversions up to 0.9 with beech wood when considering all experiments. The following method was employed to derive reliable kinetics: to first ensure that pure cellulose pyrolysis experiments from literature can be accurately reproduced, and then to conduct experiments at different heating rates and evaluate them with isoconversional methods to detect experiments that are outliers and to validate the reliability of the derived kinetics and employed reaction models with a fitting routine. The deviations in the activation energy values for the cases that followed this method, after disregarding other cases, were of 10 kJ/mol or lower, except for lignin and very high conversions. This method is therefore proposed in order to improve the consistency of data acquisition and kinetic analysis of TGA for biomass pyrolysis in literature, reducing the reported variability.

Reports | 2020

C200600_2 - Fluidization experiments February 2020

Fürsatz K, Kuba M. C200600_2 - Fluidization experiments February 2020. Bericht Versuchskampagne. February 2020

Details
Conference presentations and posters | 2020

Challenges and recent results in microalgae research

Meixner K. Challenges and recent results in microalgae research. 6th Central european biomass conference, 2020, Graz.

Download PDF Details
Conference presentations and posters | 2020

CleanAir by biomass

Sturmlechner R, Stressler H, Golicza L, Reichert G, Schwabl M, Höftberger E, Kelz J. CleanAir by biomass. 6th Central European Biomass Conference, 2020, Graz.

External Link Download PDF Details
Peer reviewed papers | 2020

Combined influence of inorganics and transport limitations on the pyrolytic behaviour of woody biomass

Almuina-Villar H, Sommersacher P, Retschitzegger S, Anca-Couce A, Dieguez-Alonso A. Combined influence of inorganics and transport limitations on the pyrolytic behaviour of woody biomass. Chemical Engineering Transactions. 2020.80:73-78

External Link Details

A deeper understanding and quantification on the influence of inorganic species on the pyrolysis process, combined with the presence of heterogeneous secondary reactions, is pursued in this study. Both chemical controlled and transport limited regimes are considered. The former is achieved in a thermogravimetric analyser (TGA) with fine milled biomass in the mg range, while the latter is investigated in a particle level reactor with spherical particles of different sizes. To account for the influence of inorganics, wood particles were washed and doped with KCl aqueous solutions, resulting in K concentrations in the final wood of around 0.5% and 5% on dry basis. Gas species and condensable volatiles were measured online with Fourier transform infrared (FTIR) spectroscopy and a non-dispersive infrared (NDIR) gas analyzer. The removal of inorganic species delayed the pyrolysis reaction to higher temperatures and lowered char yields. The addition of inorganics (K) shifted the devolatilization process to lower temperatures, increased char and water yields, and reduced CO production among others. Higher heating rates and temperatures resulted in lower char, water, and light condensable yields, but significantly higher CH4 and other light hydrocarbons, as well as CO. The increase in these yields can be attributed, at least in part, to the gas phase cracking reactions of the produced volatiles. Larger particle size increased the formation of char, CH4 and other light hydrocarbons, and light condensables for low and high pyrolysis temperatures, while reduced the release of CO2 and H2O. This novel data set allows to quantify the influence of each parameter and can be used as basis for the development of detailed pyrolysis models which can include both the influence of inorganics and transport limitations when coupled into particle models.

Filter

Contact Us

We invite you to contact our office under office@best-research.eu or a member of our personnel directly from this website. Fast and simple.

To Our Team Page