Sort Title Year

Publications


Peer Reviewed Scientific Journals | 2020

Detailed experimental investigation of the spatially distributed gas release and bed temperatures in fixed-bed biomass combustion with low oxygen concentration

Archan G, Anca-Couce A, Gregorc J, Buchmayr M, Hochenauer C, Gruber J, Scharler R. Detailed experimental investigation of the spatially distributed gas release and bed temperatures in fixed-bed biomass combustion with low oxygen concentration. Biomass and Bioenergy. 2020;141:105725

External Link

Details

This publication focuses on the experimental investigation of a novel small-scale fuel flexible biomass combustion technology with a fixed-bed employing a low oxygen concentration. It was obtained through a low primary air ratio and the additional supply of recirculated flue gas. The plant was operated with spruce wood chips, which contained three different mass fractions of water, and miscanthus pellets. All relevant components of the released gas above the fixed-bed were measured, as well as the 3D bed temperature distribution. The balances confirmed a high experimental data consistency. Therefore, it was possible to determine the location of the four different conversion zones inside the fixed-bed: drying, pyrolysis, char gasification and char oxidation. The reduction of CO2 to CO in the char reduction zone worked efficiently across the entire grate area. Furthermore, the results showed that the water mass fraction of the fuel did not influence the dry product gas composition, but significantly affected the location for the release of pyrolysis products such as tars. It was found that the low oxygen concentration in the fixed-bed combined with flue gas recirculation was an effective method to reduce bed temperatures and therefore its inorganic emissions while significantly increasing feedstock flexibility. The investigations provided fundamental findings on the conversion and release behavior of the new technology under real operating conditions and are very useful for further experimental work and CFD simulations targeting the reduction of PM and NOX emissions.


Conference contributions | 2020

Detailed investigations of high terpene concetrations in biogas laboratory trials

Knoll L, Sumethberger-Hasinger M, Nussbaumer M, Dalnodar D, Loibner A, Drosg B. Detailed investigations of high terpene concetrations in biogas laboratory trials. 6th Central European Biomass Conference, 22-24 January 2020, Graz.

Download PDF

Details


Peer Reviewed Scientific Journals | 2020

Developing an adsorption-based gas cleaning system for a dual fluidized bed gasification process

Loipersböck J, Weber G, Rauch R, Hofbauer H. Developing an adsorption-based gas cleaning system for a dual fluidized bed gasification process.Biomass Conversion and Biorefinery. 2020.

External Link

Details

Biomass has the potential to make a major contribution to a renewable future economy. If biomass is gasified, a wide variety of products (e.g., bulk chemicals, hydrogen, methane, alcohols, diesel) can be produced. In each of these processes, gas cleaning is crucial. Impurities in the gas can cause catalyst poisoning, pipe plugging, unstable or poisoned end products, or harm the environment. Aromatic compounds (e.g., benzene, naphthalene, pyrene), in particular, have a huge impact on stable operation of syngas processes. The removal of these compounds can be accomplished by wet, dry, or hot gas cleaning methods. Wet gas cleaning methods tend to produce huge amounts of wastewater, which needs to be treated separately. Hot gas cleaning methods provide a clean gas but are often cost intensive due to the high operating temperatures and catalysts used in the system. Another approach is dry or semi-dry gas cleaning methods, including absorption and adsorption on solid matter. In this work, special focus was laid on adsorption-based gas cleaning for syngas applications. Adsorption and desorption test runs were carried out under laboratory conditions using a model gas with aromatic impurities. Adsorption isotherms, as well as dynamics, were measured with a multi-compound model gas. Based on these results, a temperature swing adsorption process was designed and tested under laboratory conditions, showing the possibility of replacing conventional wet gas cleaning with a semi-dry gas cleaning approach.


Conference Papers | 2020

Development and experimental validation of a linear state-space model for absorption heat pumping systems for model-based control strategies

Zlabinger S, Unterberger V, Gölles M, Horn M, Wernhart M, Rieberer R. Development and experimental validation of a linear state-space model for absorption heat pumping systems for model-based control strategies. International Sorption Heat Pump Conference 2020.

External Link

Details

Control strategies of absorption heat pumping systems (AHPS, comprising heat pumps and chillers) often
perform insufficiently well, since they usually do not explicitly consider the systems’ dynamics and crosscoupling effects. One promising approach to improve their performance is to apply model-based control strategies since they would allow for an explicit consideration of these system characteristics. Therefore, mathematically simple models of the system to be controlled are required. This contribution proposes a new approach for such a model for a H2O-LiBr AHPS. The model results from the linearization of a more complex, nonlinear simulation model, leading to a simple, but physically still meaningful linear state-space model structure. The experimental validation shows that the developed model describes the system’s dynamics and cross-coupling effects sufficiently well and indicates that it is suitable to serve as a basis for the development of a model-based control strategy for AHPS.


Conference contributions | 2020

Die Donau - Eine Chance für die Bioenergiebranche?

Dißauer C, Strasser C. Die Donau - Eine Chance für die Bioenergiebranche? 6th Central European Biomass Conference, 2020, Graz.

Download PDF

Details


Conference contributions | 2020

Dual fluidized bed steam gasification of biomass – the basic technology for a broad product portfolio

Kuba M. Dual fluidized bed steam gasification of biomass – the basic technology for a broad product portfolio. 6th Central European Biomass Conference (oral presentation). 2020.

Details


Conference Papers | 2020

Dynamische Simulation von Absorptionskälteanlagen – Dymola-Modell einer H2O/LiBr-Absorptionskälteanlage

Wernhart M, Rieberer R, Zlabinger S, Unterberger V, Gölles M. Dynamische Simulation von Absorptionskälteanlagen: Dymola-Modell einer H2O/LiBr-Absorptionskälteanlage. in Proc. Deutsche Kälte-Klima-Tagung 2020. Deutscher Kälte- und Klimatechnischer Verein e.V. 2020

Details

Absorptionskälteanlagen können einen wesentlichen Beitrag zur Verringerung von CO2-Emissionen leisten, wenn Wärme aus regenerativen Energieträgern oder Abwärme aus industriellen Prozessen zum Antrieb verwendet wird. Absorptionskälteanlagen weisen bereits jetzt eine hohe Effizienz auf, bei veränderlichen Betriebsbedingungen kann diese je nach vorhandenen Stellgliedern weiter gesteigert werden. Dazu werden im Rahmen des Forschungsprojektes „Heat Pumping Systems Control (HPC)“ zwei Absorptionskälteanlagen – eine mit der Stoffpaarung Ammoniak/Wasser (NH3/H2O) und eine mit der Stoffpaarung Wasser/Lithiumbromid (H2O/LiBr) – untersucht, um für unterschiedliche Anwendungen optimale Betriebsstrategien zu entwickeln. Zur Berücksichtigung der Zustandsänderungen in der Absorptionskälteanlage, werden dynamische Simulationsmodelle in der Modellierungssprache Modelica entwickelt und mit Messdaten validiert.

Im Rahmen dieses Konferenzbeitrags werden Komponentenmodelle für die NH3/H2O-Absorptionskälteanlage und Simulationsrechnungen bei veränderlichen Randbedingungen präsentiert, sowie ein Vergleich mit Messdaten diskutiert.


Peer Reviewed Scientific Journals | 2020

Effects of Pyrolysis Conditions and Feedstocks on the Properties and Gasification Reactivity of Charcoal from Woodchips

Phounglamcheik A, Wang L, Romar H, Kienzl N, Broström M, Ramser K, Skreiberg Ø, Umeki K. Effects of Pyrolysis Conditions and Feedstocks on the Properties and Gasification Reactivity of Charcoal from Woodchips. Energy and Fuels. 2020;34(7):8353-8365.

External Link

Details

Pyrolysis conditions in charcoal production affect yields, properties, and further use of charcoal. Reactivity is a critical property when using charcoal as an alternative to fossil coal and coke, as fuel or reductant, in different industrial processes. This work aimed to obtain a holistic understanding of the effects of pyrolysis conditions on the reactivity of charcoal. Notably, this study focuses on the complex effects that appear when producing charcoal from large biomass particles in comparison with the literature on pulverized biomass. Charcoals were produced from woodchips under a variety of pyrolysis conditions (heating rate, temperature, reaction gas, type of biomass, and bio-oil embedding). Gasification reactivity of produced charcoal was determined through thermogravimetric analysis under isothermal conditions of 850 °C and 20% of CO2. The charcoals were characterized for the elemental composition, specific surface area, pore volume and distribution, and carbon structure. The analysis results were used to elucidate the relationship between the pyrolysis conditions and the reactivity. Heating rate and temperature were the most influential pyrolysis parameters affecting charcoal reactivity, followed by the reaction gas and bio-oil embedding. The effects of these pyrolysis conditions on charcoal reactivity could primarily be explained by the difference in the meso- and macropore volume and the size and structural order of aromatic clusters. The lower reactivity of slow pyrolysis charcoals also coincided with their lower catalytic inorganic content. The reactivity difference between spruce and birch charcoals appears to be mainly caused by the difference in catalytically active inorganic elements. Contrary to pyrolysis of pulverized biomass, a low heating rate produced a higher specific surface area compared with a high heating rate. Furthermore, the porous structure and the reactivity of charcoal produced from woodchips were influenced when the secondary char formation was promoted, which cannot be observed in pyrolysis of pulverized biomass.


Conference contributions | 2020

Energy Communities – Four Austrian Pioneering Initiatives: Microgrid Lab – Wieselburg

Zellinger M, Aigenbauer S, Stadler M. Energy Communities – Four Austrian Pioneering Initiatives: Microgrid Lab – Wieselburg. Mission Innovation Austria Online. 13 May 2020.

Details


Conference contributions | 2020

Erneuerbare in Österreich - Die Marktdiffusion im Lichte der Klima- und Energieziele

Biermayr P, Leonhartsberger K, Dißauer C; Eberl M, Enigl M, Fechner H, Lukas Fischer L, Fürnsinn B, Moidl S, Schmidl C, Strasser C, Weiss W, Wonisch P, Wopienka E. Erneuerbare in Österreich - Die Marktdiffusion im Lichte der Klima- und Energieziele. EnInnov 2020, 16. Symposium Energieinnovation (oral presentation). 2020.

External Link

Details


Conference contributions | 2020

Evaluation of gas cleaning processes for the coupling of biomass gasification with Solid Oxide Fuel Cells (SOFC)

Martini S, Lagler J, Kienzl N, Tsiotsias T, Rettschitzegger S. Evaluation of gas cleaning processes for the coupling of biomass gasification with Solid Oxide Fuel Cells (SOFC). 6th Central European Biomass Conference (oral presentation). 2020.

External Link

Details


Peer Reviewed Scientific Journals | 2020

Evaluation of heat transfer models at various fluidization velocities for biomass pyrolysis conducted in a bubbling fluidized bed

von Berg L, Soria-Verdugo A, Hochenauer C, Scharler R, Anca-Couce A. Evaluation of heat transfer models at various fluidization velocities for biomass pyrolysis conducted in a bubbling fluidized bed. International Journal of Heat and Mass Transfer. 2020;160:120175

External Link

Details

Four different models for heat transfer to the particles immersed in a fluidized bed were evaluated and implemented into an existing single particle model. Pyrolysis experiments have been conducted using a fluidized bed installed on a balance at different temperatures and fluidization velocities using softwood pellets. Using a heat transfer model applicable for fluidized beds, the single particle model was able to predict the experimental results of mass loss obtained in this study as well as experimental data from literature with a reasonable accuracy. A good agreement between experimental and modeling results was found for different reactor temperatures and configurations as well as different biomass types, particle sizes – in the typical range of pellets - and fluidization velocities when they were higher than . However, significant deviations were found for fluidization velocities close to minimum fluidization. Heat transfer models which consider the influence of fluidization velocity show a better agreement in this case although differences are still present.


Conference Papers | 2020

Evaluation of the Transient Behaviour of a Fixed-Bed Biomass Gasifier for Demand-Oriented Electricity Production

Hollenstein C, Zemann C, Antolini D, Patuzzi F, Martini S, Baratieri M, Gölles M. Horn M. Evaluation of the Transient Behaviour of a Fixed-Bed Biomass Gasifier for Demand-Oriented Electricity Production. 28th European Biomass Conference & Exhibition. 6-9 July 2020.

External Link

Details

The majority of renewable energy technologies are volatile in nature. External factors such as weather conditions lead to fluctuations in their produced electricity and heat. This results in a demand either not being covered or dissatisfied since too much electricity and heat is produced in the energy system. Although energy storages can counteract these fluctuations, renewable energy technologies that are capable of producing energy on demand are needed as well. As such, technologies based on the thermochemical conversion of biomass are especially relevant as they are considered to be CO2-neutral. Although most existing implementations are based on combustion of biomass, fixed-bed biomass gasification is of growing relevance due to higher overall efficiencies and low pollutant emissions. Currently, fixed-bed biomass gasifiers are usually operated at steady-state operation to produce the maximum amount of energy possible. This contribution investigates, whether they can be used as a technology for demand-oriented electricity and heat production


Other publication | 2020

EVEmBi – Bestimmung von Methanemissionen aus Biogasanlagen und Reduktionsstrategien

Meixner K. EVEmBi – Bestimmung von Methanemissionen aus Biogasanlagen und Reduktionsstrategien. CEBC 2020

Download PDF

Details


Conference contributions | 2020

Experimental investigation of biomass based reducing agents for blast furnace ironmaking

Kienzl N, Strasser C, Deutsch R. Experimental investigation of biomass based reducing agents for blast furnace ironmaking. 6th Central European Biomass Conference (oral presentation). 2020.

Details


Conference Papers | 2020

Experimentally verified dynamic simulation model of a NH3/H2O-absorption refrigeration system

Wernhart M, Rieberer R, Zlabinger S, Unterberger V, Gölles M. Experimentally verified dynamic simulation model of a NH3/H2O-absorption refrigeration system. in Japan Society of Refrigerating and Air Conditioning Engineers, Hrsg., 14th IIR Gustav-Lorentzen Conference on Natural Fluids, GL 2020 - Proceedings. International Institute of Refrigeration. 2020. S. 103-109. (Refrigeration Science and Technology). https://doi.org/10.18462/iir.gl.2020.1145

External Link

Details

The operation characteristics of thermally driven absorption refrigeration systems (ARS) are strongly dependent on their hydraulic integration. Therefore, varying operating conditions of the hydraulic supply have a great influence on the behaviour of ARS and lead to dynamic operation, which can affect the efficiency and is largely unexplored so far. To enable a simple investigation of ARS integration considering their dynamic behaviour and to develop modern, efficiency-enhancing control strategies, dynamic simulation models of ARS are developed in Modelica Code.

In this paper, a dynamic simulation model of an ARS with the working pair ammonia/water (NH3/H2O) is presented. The parameterization and the physical correlations of selected components of the simulation model are described. Afterwards, the simulation model is verified by comparing simulation results with measurement data of the NH3/H2O-ARS. Finally, the capabilities of the simulation model are demonstrated by performing a simulation-based analysis of the temperature glide of the refrigerant in the evaporator.


Peer Reviewed Scientific Journals | 2020

Fate of Phosphorus in Fluidized Bed Cocombustion of Chicken Litter with Wheat Straw and Bark Residues

Häggström G, Fürsatz K, Kuba M, Skoglund N, Öhman M. Fate of Phosphorus in Fluidized Bed Cocombustion of Chicken Litter with Wheat Straw and Bark Residues. Energy and Fuels. 2020.34:1822-1829

External Link

Details

This study aims to determine the fate of P during fluidized bed co-combustion of chicken litter (CL) with K-rich fuels [e.g., wheat straw (WS)] and Ca-rich fuels (bark). The effect of fuel blending on phosphate speciation in ash was investigated. This was performed by chemical characterization of ash fractions to determine which phosphate compounds had formed and identify plausible ash transformation reactions for P. The ash fractions were produced in combustion experiments using CL and fuel blends with 30% CL and WS or bark (B) at 790–810 °C in a 5 kW laboratory-scale bubbling fluidized bed. Potassium feldspar was used as the bed material. Bed ash particles, cyclone ash, and particulate matter (PM) were collected and subjected to chemical analysis with scanning electron microscopy–energy-dispersive X-ray spectrometry (SEM–EDS) and X-ray diffraction. P was detected in coarse ash fractions only, that is, bed ash, cyclone ash, and coarse PM fraction (>1 μm); no P could be detected in the fine PM fraction (<1 μm). SEM–EDS analysis showed that P was mainly present in K–Ca–P-rich areas for pure CL as well as in the ashes from the fuel blends of CL with WS or B. In the WS blend, P was found together with Si in these areas. The crystalline compound containing P was hydroxyapatite in all cases as well as whitlockite in the cases of pure CL and WS blend, of which the latter compound has been previously identified as a promising plant nutrient. The ash fractions from CL and bark blend only contained P in hydroxyapatite. Co-combustion of CL together with WS appears to be promising for P recovery, and ashes with this composition could be further studied in plant growth experiments


Conference contributions | 2020

GrateAdvance - Advanced adjustable grate solutions for future fuel flexible biomass combustion technologies

Barroso G, Essl M, Feldmeier S, Mehrabian R, Nussbaumer T, Öhman M, Reiterer T, Schwarz M, Shiehnejad-Hesar A, Wopienka E. GrateAdvance - Advanced adjustable grate solutions for future fuel flexible biomass combustion technologies. 6th Central European Biomass Conference, 2020, Graz.

Download PDF

Details


Conference contributions | 2020

GrateAdvance – Advanced adjustable grate solutions for future fuel flexible biomass combustion technologies

Barroso G, Essl M, Feldmeier S, Mehrabian R, Nussbaumer T, Öhman M, Reiterer T, Schwarz M, Shiehnejad-Hesar A, Wopienka E. GrateAdvance – Advanced adjustable grate solutions for future fuel flexible biomass combustion technologies. 6th Central European Biomass Conference - IEA-Workshop: TASK 32 (oral presentation). 2020.

Details


Other Publications | 2020

GreenGas die Alternative zu Erdgas

Strasser C, Luisser M, Drosg B. GreenGas die Alternative zu Erdgas. TGA Planung 2021. December 2020.

Details


Technical Reports | 2020

Handbook: Technical options for retrofiting industries with bioenergy

Rutz D, Janssen R, Reumerman P, Spekreijse J, Matschegg M, Bacovsky D, et al. Handbook: Technical options for retrofiting industries with bioenergy. March 2020

External Link

Details


Conference contributions | 2020

How to create value chains from different feedstocks

Enigl M, How to create value chains from different feedstocks. 6th Central Eurpean Biomass Conference, 22-254 January 2020, Graz.

Download PDF

Details


Peer Reviewed Scientific Journals | 2020

Impact of residual fuel ash layers on the catalytic activation of K-feldspar regarding the water–gas shift reaction

Fürsatz K, Kuba M, Janisch D, Aziaba K, Hammerl C, Chlebda D, Łojewska J, Hofbauer H. Impact of residual fuel ash layers on the catalytic activation of K-feldspar regarding the water–gas shift reaction. Biomass Conversion and Biorefinery. 2020

External Link

Details

Interaction of biomass ash and bed materials in thermochemical conversion in fluidized beds leads to changes of the bed particle surface due to ash layer formation. Ash components present on the bed particle surface strongly depend on the ash composition of the fuel. Thus, the residual biomass used has a strong influence on the surface changes on bed particles in fluidized bed conversion processes and, therefore, on the catalytic performance of the bed material layers. Ash layer formation is associated with an increase in the catalytic activity of the bed particles in gasification and plays a key role in the operability of different biomass fuels. The catalytic activation over time was observed for K-feldspar used as the bed material with bark, chicken manure, and a mixture of bark and chicken manure as fuels. The changes on the bed material surfaces were further characterized by SEM/EDS and BET analyses. Raman, XPS, and XRD analyses were used to characterize the crystal phases on the bed material surface. An increase in surface area over time was observed for K-feldspar during the interaction with biomass ash. Additionally, a more inhomogeneous surface composition for fuels containing chicken manure in comparison to pure bark was observed. This was due to the active participation of phosphorus from the fuel ash in the ash transformation reactions leading to their presence on the particle surface. A decreased catalytic activity was observed for the same BET surface area compared to bark combustion, caused by the different fuel ash composition of chicken manure.


Peer Reviewed Scientific Journals | 2020

Increased efficiency of dual fluidized bed plants via a novel control strategy

Nigitz T, Gölles M, Aichernig C, Schneider S, Hofbauer H, Horn M. Increased efficiency of dual fluidized bed plants via a novel control strategy. Biomass & Bioenergy. 2020 Okt;141. 105688. https://doi.org/10.1016/j.biombioe.2020.105688

External Link

Details

Industrial plants using DFB biomass gasification are on the verge of profitability. These plants should be operated more economically in order to support the industrial applications for renewable technologies of this kind. Since some parts of such plants are typically difficult to control, a state-of-the-art control strategy is analyzed here in the context of its potential for increased economic efficiency. The DFB gasification plant “HGA Senden” in Ulm, Germany is considered on an exemplary basis here. A process analysis reveals a high potential in the synchronization of product gas generation and utilization. At the present time a relevant surplus of product gas is burned in an auxiliary boiler for synchronization purposes and regular manual adjustments at the fuel feed are necessary by the plant operators. For this synchronization a novel control strategy is developed that actuates the auxiliary boiler and the fuel feed simultaneously. The novel control strategy was experimentally validated for a period of over one month. Due to this long-term evaluation the fuel consumption was reduced by 5% and the manual adjustments of the fuel feed that were necessary on average every 30min were eliminated. As a result DFB gasification plants can be operated more economically by applying the novel control strategy for synchronization of product gas generation and utilization.


Conference contributions | 2020

Individiual heat management in the living room

Schwabl M. Individiual heat management in the living room. 6th Central European Biomass Conference (oral presentation. 2020.

Download PDF

Details