Publikationen

Other Publications | 2014

Microalgae as source of biogas: Anaerobic digestion of un- and pre-treated biomass

Gruber M, Zohar E, Jerney J, Nussbaumer M, Ludwig I, Hieger C, Bromberger P, Bochmann G, Obbard JP, Schagerl M, Fuchs W, Drosg B. Microalgae as source of biogas: Anaerobic digestion of un- and pre-treated biomass, Algae Networking Event 2014, 11th of September 2014, Dürnrohr, Austria. (oral presentation)

Details
Other Publications | 2013

Microbial conversion of H2S for sulphuric acid recycling

Rachbauer L, Gabauer W, Ortner M, Bochmann G. Microbial conversion of H2S for sulphuric acid recycling, 9th International Conference on Renewable Resources & Biorefineries 2013, 5th-7th of June 2013, Antwerpen, Belgium. (peer reviewed) (visual presentation)

Details
Conference presentations and posters | 2019

Microbial Production of Enzymes from Blood and Pulp Processing Waste Streams

Weiss R, Prall K, Neunteufel E, Ortner M, Guebitz G, Nyanhongo G. Microbial Production of Enzymes from Blood and Pulp Processing Waste Streams. 8th Congress of European Microbiologists (FEMS). July 2019.

Details
Conference presentations and posters | 2020

Microgrid Lab 100 % - R&D project for decentralized energy supply with biomass and other Distributed energy Resources

Aigenbauer S. Microgrid Lab 100 % - R&D project for decentralized energy supply with biomass and other Distributed energy Resources. 6th Central European Biomass Conference, 22-24 January 2020, Graz.

Download PDF Details
Conference presentations and posters | 2020

Microgrid Lab 100% Testbed for the development of control algorithms for microgrids

Aigenbauer S, Microgrid Lab 100% Testbed for the development of control algorithms for microgrids. 6th Central European Biomass Conference, 22-24 January 2020, Graz.

Download PDF Details

Microgrids are local energy grids that (partly) cover their own energy demand. Decentralized renewable energy sources reduce energy costs and CO2 emissions in a microgrid. Various storage systems and strategies like load shift are employed to balance the volatile energy flows. Intelligent controllers improve the energy management of the micro and smart grids. BEST GmbH is the industry leader when it comes to biomass control systems in Austria. Thus, BEST GmbH is already combining this knowledge within the “OptEnGrid” (FFG 858815) and “Grundlagenforschung Smart- und Microgrid“ (K3-F-755/001-2017) research projects, which are based on the leading microgrid optimization tool DER-CAM from Lawrence Berkeley National Laboratory at the University of California. These two BEST GmbH basic research projects form the basis for new innovative microgrid controller concepts which will be implemented and tested in the presented Microgrid Research Lab in Wieselburg (project Microgrid Lab 100%). The Microgrid Research Lab will include the Technology- und Reseach Centre (tfz) Wieselburg-Land and the new firefighting department next to the tfz.

Conference presentations and posters | 2020

Microgrid Lab – R&D project for 100% decentralized energy supply with biomass and other Distributed Energy Resources (DER)

Aigenbauer S, Zellinger M, Stadler M. Microgrid Lab – R&D project for 100% decentralized energy supply with biomass and other Distributed Energy Resources (DER). 6th Central European Biomass Conference (poster). 2020.

Download PDF Details

Microgrids, a research topic within the smart grids area, build on close relationships between demand and supply and will create a 170 Mrd. € market potential in 2020[1]. These individual markets are characterized by different technologies in use. For example, biogas will play a key role in microgrids in Asia compared to Photovoltaics, Combined heat and Power (CHP), as well as storage technologies in North America. All these different technologies need to be coordinated and controlled. BIOENERGY2020+ GmbH is the industry leader when it comes to biomass control systems in Austria. Thus, BIOENERGY2020+ GmbH is already combining this knowledge within the OptEnGrid and “Grundlagenforschung Smart- und Microgrid“ (K3-F-755/001-2017) research projects, which are based on the leading microgrid optimization tool DER-CAM from Lawrence Berkeley National Laboratory at the University of California in Berkeley. These two BIOENERGY2020+ GmbH basic research projects constitute the basis for new innovative microgrid controller concepts and these new microgrid controller will be implemented and tested in the suggested Microgrid Research Lab in Wieselburg. The Microgrid Research Lab will include the Technology- und Reseach Centre (tfz) Wieselburg-Land and the new firefighting department next to the tfz.

 

 

Other Publications | 2023

Microgrids and Smart Energy Communities - Reference Projects and Use Cases

Aigenbauer S, Stadler M, Liedtke P, Sturmlechner R; Maier C, Mansoor M, Oberbauer C, Alavi F, Houben N, Haas R. Microgrids and Smart Energy Communities - Reference Projects and Use Cases. BEST Center Day. 28 June 2023

Download PDF Details
Conference presentations and posters | 2017

Microgrids and the Regional Balance of Supply and Demand in the Electricity and Heating Sector

Stadler M, Mair C, Zellinger M, Lichtenegger K, Haslinger W, Temper M, Moser A, Carlon E, Muschick D, Gölles M. Microgrids and the Regional Balance of Supply and Demand in the Electricity and Heating Sector. 20. Österreichischer Biomassetag, Windischgarsten, 14. - 15. November 2017.

External Link Details
Other Publications | 2017

Microgrids und dezentrale Energieerzeugung

Stadler M.,Carlon E., Gölles M., Haslinger W., Lichtenegger K., Mair C., Moser A., Muschick D., Zellinger M. Microgrids und dezentrale Energieerzeugung. Wasser Cluster Lunz/See Österreich, 21. September 2017.

Details
Other Publications | 2017

Mikro-Netze und die regionale Balance von Erzeugung und Verbrauch im Strom- und Wärmebereich

Stadler M, Mair C, Zellinger M, Lichtenegger K, Haslinger W, Temper M, Moser A, Carlon E, Muschick D, Gölles M. Mikro-Netze und die regionale Balance von Erzeugung und Verbrauch im Strom- und Wärmebereich. Impulsreferat 20. Österreichischer Biomassetag. Sektorkopplung & Flexibilisierung. Windischgarsten, Österreich. 14. November 2017.

Download PDF Details
Conference presentations and posters | 2015

Mikrobielle Kontamination als Ursache für Fehlgerüche bei der Lagerung von Holzpellets

Pöllinger-Zierler P, Sedlmayer I, Reinisch C, Siegmund B, Wopienka E, Pointner C, Haslinger W. Mikrobielle Kontamination als Ursache für Fehlgerüche bei der Lagerung von Holzpellets, European Pellet Conference 2015, 25th-26th of Feburary 2015, Wels, Austria.

Details
Peer reviewed papers | 2023

MIMO state feedback control for redundantly-actuated LiBr/H O absorption heat pumping devices and experimental validation

Staudt S, Unterberger V, Muschick D, Gölles M, Horn M, Wernhart M, Rieberer R. MIMO state feedback control for redundantly-actuated LiBr/H2O absorption heat pumping devices and experimental validation. Control Engineering Practice.2023:140.105661. https://doi.org/10.1016/j.conengprac.2023.105661

External Link Details

Absorption heat pumping devices (AHPDs, comprising absorption heat pumps and chillers) use mainly thermal energy instead of electricity as the driving energy to provide resource-efficient heating and cooling when using waste heat or renewable heat sources. Despite this benefit, AHPDs are still not a very common technology due to their complexity. However, better modulation and part-load capability, which can be achieved through advanced control strategies, can simplify the use of AHPDs and help to better integrate them into complex energy systems. Therefore, this paper presents a new, dynamic model-based control approach for single-stage AHPDs that can extend an AHPD’s operating range by employing multi-input-multi-output (MIMO) control methods. The control approach can be used for different AHPD applications and thus control configurations, i.e., different combinations of manipulated and controlled variables, and can also be used for redundantly-actuated configurations with more manipulated than controlled variables. It consists of an observer for the state variables and unknown disturbances, a state feedback controller and, in case of redundantly-actuated configurations, a dynamic control allocation algorithm. The proposed control approach is experimentally validated with a representative AHPD for two different control configurations and compared to two benchmark control approaches – single-input-single-output (SISO) PI control representing the state-of-the-art, and model-predictive control (MPC) as an alternative advanced control concept. The experimental validation shows that the two MIMO control approaches (the proposed state feedback and the MPC approach) allow for a wider operating range and hence better part load capability compared to the SISO PI control approach. While MPC generally results in a comparably high computational effort due to the necessity of continuously solving an optimization problem, the proposed state feedback control approach is mathematically simple enough to be implemented on a conventional programmable logic controller. It is therefore considered a promising new control approach for AHPDs with the ability to extend their operating range and improve their part load capability, which in turn facilitates their implementation and thus the use of sustainable heat sources in heating and cooling systems.

Reports | 2022

Minimization of inorganic particulate matter emissions with a novel multi-fuel combustion technology that enhances inorganic retention in a compact updraft fixed-bed

Archan GAR, Scharler R, Buchmayr M, Kienzl N, Hochenauer C, Gruber J, Anca-Couce A. Minimization of inorganic particulate matter emissions with a novel multi-fuel combustion technology that enhances inorganic retention in a compact updraft fixed-bed. Fuel. 2022.318:123611

External Link Details

A novel biomass combustion technology was investigated that operates at a low oxygen content under fixed-bed and double air staging conditions. This technology was used to achieve extremely low NOX and particle matter emissions in a 30 kW lab-scale reactor, displaying high fuel flexibility and no slagging. In this experimental work, the aim was to minimize inorganic particulate matter emissions, this aim was achieved by enabling the very low release of inorganics such as K from the fixed bed, which operates like a compact updraft gasifier. The elemental composition of the employed fuels, emitted dust particles, and fuel particle samples taken at three different heights within the fixed bed, and the bed temperatures were measured. The main objective in this study was to determine and understand the different processes of inorganic matter release that take place within the compact fixed bed. The results show that 98% and 99.7% of the K could be retained in the fixed bed for wood chips and miscanthus pellets, respectively, thus minimizing the particulate matter emissions. Different processes in the context of K release within the fixed bed could be identified for silica rich/agricultural and calcium rich / woody fuels, respectively and inconsistencies in the literature on these mechanisms could be resolved. In the case of miscanthus pellets, K is retained in silicates, and no accumulation of K, Cl and S occurs in the fixed bed above. In the case of wood chips, on the other hand, there is an unexpected K accumulation in the fixed bed, which is due to the release of K in the hot oxidation zone and the subsequent formation of large amounts of K chlorides and sulfates by condensation in the cooler upper region. Furthermore, for woody fuels, bounding or intercalation of K into the char matrix plays a more important role than the formation of carbonates in avoiding K release from the bed.

Conference presentations and posters | 2016

Mixed alcohol synthesis based on wood gas derived from dual fluidized bed biomass steam gasification - applying a rapeseed oil methyl ester gas scrubber for gas conditioning

Binder, M., Rauch, R., Hofbauer, H., 2016, "Mixed alcohol synthesis based on wood gas derived from dual fluidized bed biomass steam gasification - applying a rapeseed oil methyl ester gas scrubber for gas conditioning", poster presentation at BioResTec2016 - 1st International Conference on Bioresource Technology for Bioenergy, Bioproducts & Environmental Sustainability , 23 - 26 October 2016, Sitges, Spain.

Details
Peer reviewed papers | 2021

Mixed-integer linear programming based optimization strategies for renewable energy communities

Cosic A, Stadler M, Mansoor M, Zellinger M. Mixed-integer linear programming based optimization strategies for renewable energy communities. Energy. 237.2021

External Link Details

Local and renewable energy communities show a high potential for the efficient use of distributed energy technologies at regional levels according to the Clean Energy Package of the European Union. However, until now there are only limited possibilities to bring such energy communities into reality because of several limitation factors. Challenges are already encountered during the planning phase since a large number of decision variables have to be considered depending on the number and type of community participants and distributed technologies. This paper overcomes these challenges by establishing a mixed-integer linear programming based optimal planning approach for renewable energy communities. A real case study is analyzed by creating an energy community testbed with a leading energy service provider in Austria. The case study considers nine energy community members of a municipality in Austria, distributed photovoltaic systems, energy storage systems, different electricity tariff scenarios and market signals including feed-in tariffs. The key results indicate that renewable energy communities can significantly reduce the total energy costs by 15% and total carbon dioxide emissions by 34% through an optimal selection and operation of the energy technologies. In all the optimization scenarios considered, each community participant can benefit both economically and ecologically.

Conference presentations and posters | 2015

Model based control of a biomass fired steam boiler

Zemann C, Unterberger V, Gölles M. Model based control of a biomass fired steam boiler. 19. Steirisches Seminar über Regelungstechnik und Prozessautomatisierung. September 2015, Wagna, Austria.

Details
Other papers | 2014

Model based control of a small-scale biomass boiler

Gölles M, Reiter S, Brunner T, Dourdoumas N, Obernberger I. Model based control of a small-scale biomass boiler. Control Engineering Practice. 2014;22(1):94-102. https://doi.org/10.1016/j.conengprac.2013.09.012

External Link Details

Because of increased efforts to reduce CO2 emissions a significant step in the development of small-scale (residential) biomass boilers for space heating has been achieved in recent years. Currently, the full potential for low-emission operation at high efficiencies, which is in principle possible due to optimized furnace geometries as well as combustion air staging strategies, cannot be exploited since there is still the need to enhance the controllers applied. For this reason, a model based control strategy for small-scale biomass boilers was developed and successfully implemented in a commercially available system. Thereby, appropriate mathematical models were developed for all relevant parts of the furnace and connected to an overall model subsequently used for the control unit design. The resulting controller is based on the input–output linearization and the state variables are estimated by an extended Kalman filter. Finally, the new control was implemented at a commercially available small-scale biomass boiler and the experimental verification showed a significant improvement of the operating behaviour in comparison to the conventional control.

Other papers | 2014

Model based control of the secondary air massflow of biomass furnaces [Modellbasierte Regelung des Sekundärluftmassenstromes bei Biomasse-Feuerungsanlagen]

Schörghuber C, Gölles M, Dourdoumas N, Obernberger I. Model based control of the secondary air massflow of biomass furnaces. At-Automatisierungstechnik. 2014;62(7):487-99.

External Link Details

To influence the combustion process of modern biomass furnaces specifically the combustion-controller determines the necessary mass flows. The gaseous mass flows can be adjusted by fans and flaps. To ensure the desired overall performance of the furnace the mass flows need to be set by inner control loops respectively. Within the work described in this paper a model based approach for the control design of the inner control loop is presented exemplarily for the secondary air supply. Thereby a flatness-based feedforward control will be designed by means of an appropriate model. © 2014 Oldenbourg Wissenschaftsverlag GmbH.

Conference presentations and posters | 2014

Model based optimization of a combined biomass-solar thermal system

Stift F, Hartl M, Ferhatbegović T, Aigenbauer S, Simetzberger A. Model based optimization of a combined biomass-solar thermal system. Energy Procedia. 2014;48:681-688. (peer reviewed)

Details
Other Publications | 2023

Model-based Building Energy Management System with User Feedback in the Loop

Kaisermayer V, Muschick D, Gölles M, Horn M. Model-based Building Energy Management System with User Feedback in the Loop. BEST Center Day. 28 June 2023

Download PDF Details

Optimization-based energy management systems (EMS) are a high-level control approach for energy systems like district heating networks. A descriptive model and objective function are required to solve an optimization problem and apply the resulting schedule in a receding horizon fashion. EMS for buildings require a simplified model of each thermal zone, and the objective function includes costs for heating and cooling, virtual costs, and a comfort model. Feedback from users is necessary since thermal comfort varies among individuals.

PhD Thesis | 2023

Model-based control of absorption heat pumping devices

Staudt S. Model-based control of absorption heat pumping devices. 2023. 170 S.

Details

Absorptionswärmepumpenanlagen (AWPA, beinhaltet Absorptionswärmepumpen und –kältemaschinen), sind Anlagen, die hauptsächlich thermische statt elektrischer Energie nutzen, um Wärme und Kälte zu generieren. Dadurch wird die Nutzung von Abwärme und erneuerbaren Energiequellen wie Solarenergie in Heiz- und Kühlsystemen erleichtert. Trotz dieses Vorteils ist der Einsatz von AWPA nach wie vor stark eingeschränkt. Ein Grund dafür ist das Fehlen von Regelungsstrategien, die eine zufriedenstellende Regelgüte über einen weiten Betriebsbereich, insbesondere unter Teillast, bieten. Deshalb befasst sich diese Arbeit mit der Entwicklung eines neuen, modellbasierten Regelungsansatzes für AWPA, die den Betriebsbereich durch den Einsatz von Mehrgrößen-Regelungsmethoden (multi-input-multi-output (MIMO) Regelungsmethoden) erweitern kann.



Zunächst wird ein geeignetes dynamisches Modell abgeleitet, das im modellbasierten Regelungsansatz verwendet werden soll. Es handelt sich um ein physikalisch basiertes Modell mit modularer Struktur, was eine systematische Anpassung an verschiedene AWPA erleichtert. Um die Anzahl der Zustandsvariablen niedrig zu halten, werden nur diejenigen Masse- und Energiespeicher berücksichtigt, die zu Zeitkonstanten und Totzeiten führen, die für die spätere Regelungsaufgabe relevant sind. Das entwickelte Modell ist mathematisch einfach, hat jedoch die Struktur eines nichtlinearen differential-algebraischen Gleichungssystems. Als solches ist es sehr gut als Simulationsmodell geeignet um verschiedene Regelungsstrategien in der Simulation zu testen, aber es ist zu komplex für viele modellbasierte Regelungsmethoden. Um eine noch einfachere Modellstruktur zu erhalten, wird das Modell an einem Betriebspunkt linearisiert, was auf ein Modell in linearer Zustandsraumdarstellung führt. Die entwickelten nichtlinearen und linearen Modelle werden experimentell validiert und mit zwei alternativen Modellierungsansätzen als Benchmark verglichen. Ein Vergleich zwischen dem abgeleiteten nichtlinearen Modell und den Benchmark-Modellen zeigt eine höhere Genauigkeit für das neue Modell, sowohl stationär als auch dynamisch. Ein Vergleich zwischen dem abgeleiteten nichtlinearen und dem linearisierten Modell zeigt, dass das linearisierte Modell zwar eine etwas schlechtere stationäre Genauigkeit aufweist, die dynamische Genauigkeit jedoch durch die Linearisierung nahezu unbeeinflusst zu sein scheint. Das vorgestellte neue linearisierte AWPA -Modell gilt daher als geeignet, als Grundlage für den Entwurf des modellbasierten Regelansatzes verwendet zu werden.



Als nächstes wird dieses Modell verwendet, um einen neuen modellbasierten Regelungsansatz für AWPA zu entwerfen. Der neue Regelungsansatz kann für verschiedene AWPA-Anwendungen und damit für verschiedene Regelungskonfigurationen verwendet werden, d.h., verschiedene Kombinationen von Stell- und Regelgrößen. Er kann auch für redundante aktuierte Konfigurationen mit mehr Stell- als Regelgrößen verwendet werden, was die Erweiterung des Betriebsbereichs einer AWPA ermöglicht. Der Ansatz besteht aus einem Beobachter für die Zustandsvariablen und unbekannte Störgrößen, einem Zustandsregler und, im Falle von redundant aktuierten Konfigurationen, einem Algorithmus zur dynamischen Stellgrößenverteilung. Der vorgeschlagene Regelungsansatz wird experimentell für zwei verschiedene Regelungskonfigurationen validiert und mit zwei Benchmark-Ansätzen verglichen – einem Eingrößen-PI-Regler (Single-input-single-output (SISO) PI-Regler), der den Stand der Technik repräsentiert, und einem modellprädiktiven Regelungsansatz (model predictive control, MPC) als alternative fortschrittliche Regelungsmethode. Die experimentelle Validierung zeigt, dass die beiden MIMO-Regelungsansätze (der vorgeschlagene Zustandsregler und der MPC-Ansatz) einen erweiterten Betriebsbereich und somit eine bessere Teillastfähigkeit im Vergleich zum SISO-PI-Regler ermöglichen. Während MPC durch die Notwendigkeit zur kontinuierlichen Lösung eines Optimierungsproblems im Allgemeinen eine vergleichsweise hohe Rechenleistung benötigt, ist der vorgeschlagene Zustandsregler-Ansatz mathematisch einfach genug, um auf herkömmlichen speicherprogrammierbaren Steuerungen für AWPA implementiert werden zu können. Er wird daher als vielversprechender neuer Regelungsansatz für AWPA betrachtet, der die Möglichkeit bietet, ihren Betriebsbereich zu erweitern und ihre Teillastfähigkeit zu verbessern, was wiederum eine einfachere Einbindung in moderne Energiesysteme ermöglicht und somit die Nutzung nachhaltiger Wärmequellen für Heizen und Kühlen erleichtert.

Conference presentations and posters | 2022

Model-based control of absorption heat pumping systems

Staudt S, Unterberger V, Muschick D, Wernhart M, Rieberer R. Model-based control of absorption heat pumping systems. 2022. Abstract from 22. Styrian Workshop on Automatic Control, Leitring/Wagna, Austria.

External Link Details

Absorption heat pumping systems (AHPSs, comprising absorption heat pumps and chillers) are devices that mainly use thermal energy instead of electricity to generate heating and cooling. This thermal energy can be provided by, e.g., waste heat or renewable energy sources such as solar energy, which allow AHPSs to contribute to ressource-efficient heating and cooling systems. Despite this benefit, AHPSs are still not a widespread technology. One reason for this is unsatisfactory controllability under varying operating conditions, which results in poor modulation and partial load capability. Emloying model-based control is a promising approach to address this issue, which will be the focus of this  contribution.
First, a viable control-oriented model for AHPSs is developed. It is based on physical correlations to facilitate systematic adaptions to different scales and operating conditions and considers only the most relevant mass and energy stores to keep the model order at a minimum. The resulting model is mathematically simple but still has the structure of a nonlinear differential-algebraic system of equations. This is typical for models of thermo-chemical
processes, but is unfortunately not suitable for many control design methods. Therefore, linearization at an operating point is discussed to derive a model in linear state space representation. Experimental validation results show that the linearized model does have slightly worse steady-state accuracy than the nonlinear model, but that the dynamic accuracy seems to be almost unaffected by the linearization and is considered sufficiently good to be used in control design.
As a next step, the linearized model is used to design model-based control strategies for AHPSs. A special focus is put on redundantly-actuated configurations, i.e. configurations with more manipulated variables than controlled variables, which allows using additional degrees of freedom to extend the operating range of AHPS and hence improve their partial load capability. Two model-based control approaches are discussed: First, a linear model predictive control (MPC) approach is presented - a well-established and generally easy-to-parameterize approach, which, however, often results in high computational effort prohibitive to its implementation on a conventional PLC. Therefore, a second control approach based on state feedback is presented which is mathematically simple enough for implementation on a conventional PLC. It consists of an observer for state variables and unknown disturbances, a state feedback controller and, in case of redundantly-actuated configurations, a dynamic control allocation algorithm. Both approaches are experimentally validated and compared to a state-of-the art control approach based on SISO PI control, showing that the model-based MIMO control approaches allow for a wider operating range and hence better modulation and partial load capability compared to the SISO PI approach. This, in turn, reduces ON/OFF operation of AHPSs and also facilitates their integration into complex energy systems to generate heating and cooling in a ressource-efficient manner.

Peer reviewed papers | 2020

Model-based control of hydraulic heat distribution systems — Theory and application

Unterberger V, Muschick D, Loidl A, Poms U, Gölles M, Horn M. Model-based control of hydraulic heat distribution systems — Theory and application. Control Engineering Practice. 2020;2020(101).104464. https://doi.org/10.1016/j.conengprac.2020.104464

External Link Details

With the share of renewable energy sources increasing in heating and hot water applications, the role of hydraulic heat distribution systems is becoming more and more important. This is due to the fact that in order to compensate for the often fluctuating behaviour of the renewables a flexible heat transfer must be ensured by these distribution systems while also taking the optimal operating conditions (mass flow, temperature) of the individual components into consideration. This demanding task can be accomplished by independently controlling the two physical quantities mass flow and temperature. However, since there exists an intrinsic nonlinear coupling between these quantities this challenge cannot be handled sufficiently by decoupled linear PI controllers which are currently state-of-the-art in the heating sector. For this reason this paper presents a model-based control strategy which allows a decoupled control of mass flow and temperature. The strategy is based on a systematic design approach from models described in this contribution, which are validated by commercially available components from which most of them can be parametrized by the data sheet. The control strategy is designed for a typical hydraulic configuration used in heating systems, which will allow the accurate tracking of the desired trajectories for mass flows, temperatures and consequently heat flows. The controllers are validated experimentally and compared to well-tuned state-of-the-art (PI) controllers in order to illustrate their superiority and prove their decoupling of the control of mass flow and temperature in real world applications.

Other Publications | 2017

Model-based control of hydronic networks using graph theory

Muschick D, Unterberger V, Gölles M. Model-based control of hydronic networks using graph theory. Steirische Seminar über Regelungstechnik und Prozessautomatisierung / Styrian Workshop on Automatic Control. September 2017.

Details
Peer reviewed papers | 2017

Model-Based Control Strategies for an Efficient Integration of Solar Thermal Plants Into District Heating Grids

Unterberger V, Muschick D, Gölles M. Model-Based Control Strategies for an Efficient Integration of Solar Thermal Plants Into District Heating Grids. ISES Solar World Congress 2017. 29.10-02.11.2017. Abu Dhabi, United Arab Emirates.

External Link Details

The integration of solar thermal plants into district heating grids requires advanced control strategies in order to utilize the full potential in terms of efficiency and least operating effort. State-of-the-art control strategies cannot completely fulfil this since they are not able to consider the physical characteristics of the different components, nor do they take information on future conditions and requirements into account properly. A promising attempt for improvement is the application of model-based control strategies together with practicable forecasting methods for both the solar yield as well as the heat demand. This contribution will present the results of several projects performed on the development of suitable mathematical models, forecasting methods and control strategies relevant for the integration of solar thermal plants into district heating grids.

Peer reviewed papers | 2021

Model-Based Estimation of the Flue Gas Mass Flow in Biomass Boilers.

Niederwieser H, Zemann C, Goelles M, Reichhartinger M. Model-Based Estimation of the Flue Gas Mass Flow in Biomass Boilers. IEEE Transactions on Control Systems Technology. 2021 Jul;19(4):1609 - 1622. https://doi.org/10.1109/TCST.2020.3016404

External Link Details

Three estimators for the estimation of the flue gas mass flow in biomass boilers are presented and compared, namely a sliding-mode observer, a Kalman filter, and a so-called steady-state estimator. The flue gas mass flow is an important process variable in biomass boilers as it contains information about the supplied mass flows of air and decomposed fuel. It is also related to the generated heat flow. Furthermore, its knowledge may be exploited in model-based control strategies which allow one to keep pollutant emissions low, on the one hand, and to achieve high efficiency, on the other hand. However, due to fouling of the equipment over time, measurements and existing estimation methods are not suitable for long-term applications. The estimators proposed in this article are based on a dynamic model for gas tube heat exchangers. They are capable of handling the fouling of the heat exchanger and, additionally, they offer the possibility of monitoring the degree of fouling. By incorporating an additional differential pressure measurement and extending the aforementioned estimators, an improvement regarding the dynamic response and the estimation accuracy is achieved. The application of the estimators to real measurement data from both, a medium-scale and a small-scale biomass boiler, demonstrates their wide applicability.

Conference presentations and posters | 2020

Model-based estimation of the flue gas mass flow in biomass furnaces

Niederwieser H. Model-based estimation of the flue gas mass flow in biomass furnaces. 6th Central European Biomass Conference. 22-24 January 2020, Graz.

Download PDF Details
Reports | 2018

Modellbasierte Regelung und Elektrofilterintegration zur schadstoffarmen Verbrennung alternativer Biomassebrennstoffe

Muschick D, Zemann C, Kelz J, Hofmeister G, Gölles M. Modellbasierte Regelung und Elektrofilterintegration zur schadstoffarmen Verbrennung alternativer Biomassebrennstoffe. FFG, Energieforschungsprogramm 1. Ausschreibung. 2018.

Download PDF Details
Reports | 2018

Modellbasierte Regelung von Scheitholzkesseln mit Pufferspeicher - Smart logwood boiler

Endbericht

Deutsch M, Gölles M, Zemann C, Zlabinger S. Modellbasierte Regelung von Scheitholzkesseln mit Pufferspeicher - Smart logwood boiler. FFG, Energieforschungsprogramm 1. Ausschreibung. 2018.

Download PDF Details

Scheitholzkessel sind die in Europa immer noch am stärksten verbreitete Form von Holz-basierten Zentralheizungssystemen. Der Bestand ist überaltert und weist die größten Anteile an den verursachten Schadstoffemissionen aus Festbrennstoffzentralheizungssystemen auf. Das Ziel des Projektes, die komplette Neuentwicklung einer modellbasierten Regelung für Scheitholzkessel mit Pufferspeichern und einer Solaranlage, stellte einen Technologie-sprung in Richtung einer drastischen Reduktion der Schadstoffemissionen (CO, org. C, Fein-staub) bei gleichzeitiger Erhöhung des Nutzungsgrades und Benutzerkomforts dar. Dabei erfolgte sowohl die übergeordnete Regelung des Zusammenspiels der Komponenten (Systemregelung) als auch die Regelung der einzelnen Komponenten (Feuerungsregelung, Hydraulikregelung) modellbasiert. Die neue Regelung basiert auf einer gezielten Interaktion mit dem Benutzer, in welcher der Benutzer zielgerichtet zum Nachlegen einer bestimmten Brennstoffmenge in einem bestimmten Zeitraum aufgefordert wird. Zusätzlich dazu werden alle Teilprozesse (Verbrennung des Scheitholzes, Übertragung der Wärme in den Pufferspeicher, usw.) modellbasiert und damit deutlich effizienter und genauer geregelt. Im Fall der Feuerungsregelung wurde zusätzlich zur modellbasierten Regelung von Vorlauf-temperatur und Sauerstoffgehalt auch eine innovative CO-l-Regelung eingesetzt, die basierend auf einer kontinuierlichen Schätzung der CO- l-Charakteristik unter Verwendung eines kombinierten Sensors zur Sauerstoffmessung und Detektion unverbrannter Kompo-nenten stets einen für den aktuellen Betriebszustand optimalen Sollwert für den Sauer-stoffgehalt vorgibt. Die laufende Anpassung des Sauerstoffgehaltes führt zu einer deutlichen Reduktion der Schadstoffemissionen (CO, org. C, Feinstaub). Zum Erreichen dieser Ziele wurden im Wesentlichen folgende Schritte durchgeführt:

  • Experimentelle Untersuchung und Modellierung des Abbrandverhaltens von Scheitholz (inklusive der CO-l-Charakteristik)
  • Entwicklung einer übergeordneten modellbasierten Systemregelung
  • Entwicklung einer modellbasierten Feuerungsregelung (inkl. CO-l-Regelung) für einen effizienten und schadstoffarmen Betrieb des Scheitholkessels
  • Experimentelle Bewertung des Potentials der modellbasierten Regelung
  • Analyse der Anforderungen zur Anpassung der Regelung an andere Konfigurationen

 

Das beantragte Projekt leistete somit einen entscheidenden Beitrag zum Ausschreibungs-schwerpunkt „Effiziente und emissionsarme Klein- und Kleinstfeuerungen durch Integration einer intelligenten Verbrennungs- und Leistungsregelung“ und ging zusätzlich explizit auf die im Ausschreibungsleitfaden adressierte Verwendung von kombinierten Sensorsystemen wie CO- l-Sensorsysteme zur Verbrennungsregelung ein. Dabei ist insbesondere hervorzuheben, dass der durchdachte Ansatz das Sensorsignal zu Schätzung der CO- l-Charakteristik zu verwenden den wesentlichen Vorteil mit sich bringt, dass die exakte Messung der CO-Emissionen durch den Sensor nicht erforderlich ist, sondern es ausreicht, wenn dieser die Tendenzen richtig wiedergibt.

Other Publications | 2015

Modellbildung und Regelung von Biomasse-Feuerungsanlagen

Schörghuber, C. Modellbildung und Regelung von Biomasse-Feuerungsanlagen, Ph.D. Thesis, Technische Universität Graz, Graz, Austria, 2015.

Details
Conference presentations and posters | 2013

Modellbildung von Luft- und Rauchgasrezirkulations-Zufuhren bei Biomasse-Feuerungsanlagen

Schörghuber C, Gölles M, Dourdoumas N, Brunner T, Obernberger I. Modellbildung von Luft- und Rauchgasrezirkulations-Zufuhren bei Biomasse-Feuerungsanlagen, 18. Steirisches Seminar über Regelungstechnik und Prozessautomatisierung 2013, 2nd-5th of September 2013, Leibnitz, Austria.

Details
Other papers | 2008

Modellierung des dynamischen Verhaltens der Wärmeübertragung in einem Rauchrohr-Wärmeübertrager

Bauer R, Gölles M, Brunner T, Dourdumas N, Obernberger I. Dynamic modelling of the heat transfer in a gas tube heat exchanger. At-Automatisierungstechnik. 2008;56(10):513-20.

External Link Details

For an appropriate operation of a heat exchanger it is very helpful to know its dynamic behaviour. To this a simple sufficient accurate nonlinear model for the description of the dynamic behaviour is derived on the basis of a gas tube heat exchanger. Due to the general approach used for the derivation the model could be adaptet easily for other types of heat exchangers. The presented model can be used to estimate not measured physical values, to monitor the deposit formation in the heat exchanger and as a basis for the design of a model based control strategy. © Oldenbourg Wissenschaftsverlag.

Other Publications | 2014

Modellierung und Regelung eines Pufferspeichers in Kombination mit einer Biomassefeuerung

Hemmer, J. Modellierung und Regelung eines Pufferspeichers in Kombination mit einer Biomassefeuerung, Master Thesis, Technische Universität Graz, Graz, Austria, 2014.

Details

Die vorliegende Arbeit widmet sich der Herleitung mathematischer Simulationsmodelle eines Pufferspeichers, eines Solarkollektors sowie eines Plattenwärmeübertragers. Dabei wird das Simulationsmodell des Pufferspeichers anhand eines am Markt verfügbaren Pufferspeichers entwickelt. Die mathematischen Beschreibungen der Simulationsmodelle basieren auf einer partiellen Differentialgleichung zur Beschreibung der Wärmeübertragung in einem durchströmten zylindrischen Rohr. Nach dem Erhalt der mathematischen Modelle werden diese mit einem impliziten Lösungsverfahren numerisch gelöst. Anschließend werden die experimentell zu ermittelnden Parameter des Pufferspeichermodells anhand gezielt durchgeführter Versuche bestimmt. Nach dem Ermitteln der Parameter wird das Simulationsmodell des Pufferspeichers mit einem weiteren Versuch experimentell verifiziert. Schlussendlich bildet das mathematische Modell des Pufferspeichers den untersuchten Pufferspeicher sehr zufriedenstellend ab, womit ein Simulationsmodell vorliegt, das gezielte Untersuchungen ohne aufwändige Versuche ermöglicht. Abschließend wird eine Regelung für die Wärmeübertragung aus dem Solarkollektor in den Pufferspeicher entwickelt. Dabei werden zwei in der Praxis übliche Verfahren untersucht. Bei der ersten Variante erfolgt die Übertragung der Wärme in den Pufferspeicher über ein im Pufferspeicher integriertes Solarregister. Bei der zweiten Variante erfolgt die Übertragung der Wärme über einen Plattenwärmeübertrager vom Wasser-Frostschutzgemisch auf Wasser, welches dann direkt in den Pufferspeicher eingespeist wird. Als Reglerstruktur wird in beiden Fällen ein Standard-Regelkreis mit einer statischen Vorsteuerung verwendet. Anhand von Simulationsstudien werden zunächst die Parameter des PI-Reglers festgelegt und in weiterer Folge die mit der jeweiligen Variante resultierenden Temperaturverläufe des Wassers im Pufferspeicher untersucht und gegenübergestellt. Dabei stellt sich heraus, dass die Temperatur des Wassers im Pufferspeicher, bei gleich bleibender Strahlungsstromdichte der Solarstrahlung Igauf den Solarkollektor, die gewünschte Solltemperatur bei Wärmeübertragung mittels Plattenwärmeübertrager schneller erreicht, als bei Wärmeübertragung durch das Solarregister. Darüber hinaus ermöglicht die Verwendung des Plattenwärmeübertragers eine Schichtung der Temperatur des Wassers im Pufferspeicher und somit eine Speicherung der Wärme auf einen höheren Temperaturniveau.

Other Publications | 2013

Modellierung und Regelung von Biomasse-Thermoölkesselanlagen

Dietachmayr, F. Modellierung und Regelung von Biomasse-Thermoölkesselanlagen, Master Thesis, Master Thesis, Technische Universität Graz, Graz, Austria, 2013.

Details

Die Verbrennung fester Biomasse gewinnt als nachhaltige Form der Energieerzeugung stetig an Bedeutung. Eine mögliche Technologie stellen dabei Biomasse-Thermoölkesselanlagen dar, deren Regelungen bis jetzt noch nicht auf einem mathematischen Modell basieren und dementsprechend deren verkoppeltes und zum Teil nichtlineares Verhalten nur ungenügend berücksichtigen. Ziel dieser Arbeit ist es, ein für Biomassefeuerungsanlagen mit Wasserkesseln existierendes Modell sowie die darauf aufbauende Regelungsstrategie an die speziellen Gegebenheiten von Thermoölkesselanlagen anzupassen. Dazu wird zunächst ein einfaches Modell für Thermoölwärmeübertrager auf Basis einer Energiebilanz hergeleitet und anhand von verfügbaren Betriebsdaten qualitativ verifiziert. Anschließend wird die bei der Regelung von Wasserkesselanlagen eingesetzte Eingangs-Ausgangslinearisierung verallgemeinert. Darauf aufbauend wird eine Regelungsstrategie zur Regelung des Thermoölwärmeübertragers hergeleitet. Die Leistungsfähigkeit des Regelungskonzeptes wird schließlich in Simulationsstudien gezeigt. 

PhD Thesis | 2023

Modelling and control of a small-scale fixed-bed biomass gasification system

Hollenstein C. Modelling and control of a small-scale fixed-bed biomass gasification system. 2023.

Details
PhD Thesis | 2021

Modelling and control of large-scale solar thermal systems

Unterberger V. Modelling and control of large-scale solar thermal systems. 2021. 212 p.

Details

Heat makes up the largest share of energy end-use, accounting for 50% of global final energy consumption in 2018 and contributing to about 40% of global carbon dioxide (CO2) emissions. Of the total heat produced, about 46% was consumed in buildings for space and water heating. Large-scale solar thermal systems provide a highly valuable possibility to increase the share of renewables in heating systems and to reduce carbon dioxide emissions. In this context, the worldwide number of large-scale solar heating systems has increased rapidly in the last couple of years, especially in China and European countries, e.g. in Denmark. This has led to the installation of about 400 large-scale solar thermal systems ( ≥ 350kWth, 500m²) by the end of 2019.
Unlike other heating systems, their main source of power (solar radiation) cannot be manipulated and is subject to changes on a seasonal as well as on a daily basis. That is why control systems play a very important role for the efficient operation of these systems. This thesis therefore focuses on the application of model-based control strategies, and the necessary preliminary work regarding modelling, in order to achieve an efficient control of large-scale solar thermal systems. Consequently, the thesis addresses three important aspects:
In the first main section, models of components of large-scale solar thermal systems are developed and validated. For the most important components (heat exchanger, solar collector and sensible heat storage), two models of different complexity, one simulation-oriented, one control-oriented, are developed. While the simulation-oriented models aim to model the physical behaviour very accurately in order to be used in simulation studies, control-oriented models aim to model the physical behaviour only as accurately as necessary in order to serve as a basis for model-based control strategies. All models are validated with measurement data from a typical solar system, and it is shown that they are sufficiently accurate for their intended purpose. The sum of the models provides a holistic view on all modelling aspects that have to be considered in large-scale solar thermal plants, and serves as a reasonable basis for model-based control strategies and accurate simulation studies of solar systems.
In the second main section, adaptive forecasting methods for the future solar heat production as well as the heat demand are developed and validated with measurement data and using real weather forecasts. These methods are important to most efficiently integrate and operate solar systems by better scheduling heat production, storage and distribution for the near future. In order to be used in real-world applications, the methods are developed with the goal to meet three important practical requirements: simple implementation, automatic adaption to seasonal changes, and wide applicability. The final long-term evaluation for half a year proves that the developed methods can forecast the solar heat production as well as the heat demand very accurately and outperform common forecasting methods, yielding results that are nearly twice as accurate.
In the third main section, model-based control strategies for the high-level as well as for the low-level control of solar thermal systems are developed and validated. For the high-level control an approach is presented which considers future information by using the developed forecasting methods. It achieves higher profits (plus 3 %) and leads to a more stable operation, compared to the existing commercial solution. For the low-level control, model-based control strategies based on the developed models for the heat generation and distribution are presented. The model-based control strategy for the heat generation considers the dynamic behaviour of the collector and especially considers the variable time-delay. This, compared to conventional control strategies, leads to a significantly better control performance in case of fluctuating solar radiation and changing inlet temperatures. The model-based control strategy for the heat distribution follows a modular approach which can be applied for several hydraulic settings, leading to an accurate and independent control of mass flow and temperature, and outperforms state-of-the-art control strategies. For both control levels, care was taken that the applied strategies can be used in real-world applications regarding their mathematical complexity and computational resources required.
In summary, this thesis presents a holistic approach regarding modelling (simulation-oriented models, control-oriented models and adaptive forecasting methods) and control aspects (high-level as well as low-level control) which can help to improve the efficiency of large-scale solar thermal plants on various levels, making them more competitive, and is furthermore essential for a successful integration of these plants in larger energy systems.

Peer reviewed papers | 2021

Modelling fuel flexibility in fixed-bed biomass conversion with a low primary air ratio in an updraft configuration

Anca-Couce A, Archan G, Buchmayr M, Essl M, Hochenauer C, Scharler R. Modelling fuel flexibility in fixed-bed biomass conversion with a low primary air ratio in an updraft configuration. Fuel. 2021.296:120687.

External Link Details

Fixed-bed biomass conversion with a low primary air ratio and a counter-current configuration has a high feedstock flexibility, as it resembles updraft gasification, and the potential to reduce emissions when integrated in biomass combustion systems. A 1D bed model was validated with experimental results from a biomass combustion boiler with such a bed conversion system, predicting with a good accuracy the temperatures in the reactor and producer gas composition. The model was applied for different cases to investigate the fuel flexibility of this combustion system, including the influence of moisture content and the maximum temperatures achieved in the bed. It was shown that with variations in fuel moisture content from 8 to 30% mass w.b. the producer gas composition, char reduction to CO or maximum temperatures at the grate were not affected due to the separation of the char conversion and pyrolysis/drying zones. Flue gas recirculation was the only possible measure with the tested configuration to reduce the maximum temperatures close to the grate, which is beneficial e.g. to avoid slagging with complicated fuels. A higher tar content was obtained than in conventional updraft gasifiers, which is attributed to the absence of tar condensation in the bed due to the limited height of the reactor and the integration in the combustion chamber. The presented model can support the development of such combustion technologies and is a relevant basis for detailed CFD simulations of the bed or gas phase conversion.

Peer reviewed papers | 2017

Modelling heat of reaction in biomass pyrolysis with detailed reaction schemes

Anca-Couce A, Scharler R. Modelling heat of reaction in biomass pyrolysis with detailed reaction schemes. Fuel. 15 October 2017;206: 572-579.

External Link Details

Primary devolatilization and the exothermic heterogeneous secondary charring of the primary volatiles need to be described in a consistent manner in order to correctly predict the heat of reaction of biomass pyrolysis. Detailed reaction schemes can currently predict mass loss and product composition of biomass pyrolysis with good accuracy, but have a weakness in the description of the heat of reaction. In this work it is shown for the first time that including secondary charring reactions a detailed reaction scheme can predict the evolution of the heat of pyrolysis for different conditions. The enthalpy of reaction is calculated for each reaction as the difference between the net calorific value of reactants and products. The presented model is able to describe the heat evolution in micro-TGA-DSC experiments conducted without a lid, where pyrolysis is endothermic, and with a lid, where secondary reactions are enhanced and the global heat of reaction shifts to exothermic. Furthermore, when it is coupled to a particle model, it correctly describes single particle pyrolysis experiments conducted with beech spheres where there is a remarkably exothermic peak in the centre temperature.

Other Publications | 2013

Modelling of biomass packed bed combustion

Mehrabian, R. Modelling of biomass packed bed combustion, Ph.D. Thesis, Graz University of Technology, Graz, Austria, 2013.

Details

 Im Bereich der thermischen Biomassenutzung (speziell Rostfeuerungen) werden CFD-Simulationen eingesetzt, um Hilfestellung bei der Diagnose und Lösung von Betriebsproblemen zu leisten sowie bei der Entwicklung von neuen Feuerungen und Kesseln zu unterstützen. Zurzeit sind keine Modelle verfügbar, mit denen sowohl die Vorgänge im Brennstoffbett als auch in der Gasphase einer Biomasse-Rostfeuerung mit Hilfe von detaillierten numerischen Modellen bei akzeptabler Berechungszeit simuliert werden können. Um die direkte Kopplung des Bett-Modells mit der Gasphase zu bewerkstelligen, ist es nötig, ein geeignetes Partikel-Modell zu entwickeln, welches die thermische Konversion (Trocknung, Pyrolyse und Holzkohle-Ausbrand) von thermisch dicken Biomassepartikeln beschreibt und mit bereits vorhandenen CFD-Modellen für die Gasphasensimulation gekoppelt werden kann. In diesem Schalenmodell werden die einzelnen Biomassepartikel als thermisch dick behandelt, d.h. die Temperaturgradienten in den einzelnen Partikeln sowie der gleichzeitige Ablauf mehrerer Umwandlungsprozesse berücksichtigt. Das Schalenmodell wurde mit Hilfe von gemessenen Partikeloberflächen- und -zentrumstemperaturen sowie mit Messwerten des Gesamtmasseverlustes während der Verbrennung in einem Einzel-Partikelreaktor validiert. Ein weiteres Problem, das bei der Simulation von Biomasse-Rostfeuerungen auftritt, ist die Modellierung der Gas-Festkörper-Mehrphasenströmung. Das Modell muss dabei in der Lage sein, den Einfluss der Partikel-Partikel-Wechselwirkung währenden der Partikelbewegung am Rost korrekt zu beschreiben. Aus diesem Grund wurde durch Kopplung von Euler- und Lagrange Mehrphasenströmungs- Ansätzen ein neues, dreidimensionales Schüttungsmodell entwickelt. Dabei wird die Partikelbewegung am Rost mit Hilfe eines Euler-Ansatzes (Euler-Granular-Modell) beschrieben, während die thermische Umwandlung der Biomassepartikel mit Hilfe eines Lagrange-Ansatzes und dem entwickelten Einzelpartikelmodell beschrieben wird. Das 3D-Festbettmodell für Biomasserostfeuerungen wurde eingesetzt, um eine 20 kW Biomasse-Unterschubfeuerung zu simulieren. Da es keine experimentelle Daten hinsichtlich der Bedingungen im Brennstoffbett gab, wurden qualitative Informationen hinsichtlich der Positionen der Trocknungs-, Pyrolyse- und Holzkohle-Ausbrandzonen, sowie mit Thermoelementen gemessenen Rauchgastemperaturen an verschiedenen Positionen in der Brennkammer zum Vergleich mit den Simulationsergebnissen herangezogen. Des Weiteren erfolgte im Zuge dieser Arbeit eine Weiterentwicklung des Festbett-Modells, indem der Strahlungsaustausch zwischen den Partikeln sowie detaillierte kinetische Modelle für die Gasphasenverbrennung im Modell implementiert wurden. Das weiterentwickelte Modell wurde mit Hilfe von experimentellen Daten aus Testläufen in einem Festbett-Laborreaktor validiert. Diese Messdaten beinhalten gemessene Konzentrationen von CO, CO2, CH4, H2, H2O und O2 im Rauchgas über dem Brennstoffbett sowie Temperaturen in unterschiedlichen Positionen im Bett und über dem Bett. Die vorhergesagten Werte zeigten eine gute Übereinstimmung mit den gemessenen Werten.

Other papers | 2010

Modelling of grate combustion in a medium scale biomass furnace for control purposes

Bauer R, Gölles M, Brunner T, Dourdoumas N, Obernberger I. Modelling of grate combustion in a medium scale biomass furnace for control purposes. Biomass Bioenergy. 2010;34(4):417-27.

External Link Details

A new mathematical model for the grate combustion of biomass has been derived from physical considerations. Various models for grate combustion can already be found in the literature. Usually their intention is to simulate the real situation in a furnace as precisely as possible. Hence they are very detailed, typically consisting of many partial differential equations. However, because of their complexity they are useless for control purposes. The new model is very simple, consisting of only two ordinary differential equations, which makes it particularly suitable as a basis for model based control strategies. To verify the model, experiments were performed at a pilot scale furnace with horizontally moving grate. The pilot plant is a downscaled version (180 kWth) of a typical medium scale furnace in terms of geometry and instrumentation. Comparison of the measured and calculated values shows good agreement. © 2009 Elsevier Ltd. All rights reserved.

Other papers | 2017

Modellprädiktive Regelung eines solar-und biomassebasierten Fernwärmenetzes

Moser A, Muschick D, Lichtenegger K, Gölles M, Hofer A. Modellprädiktive Regelung eines solar- und biomassebasierten Fernwärmenetzes. Zukunft der Gebäude: digital - dezentral - ökologisch. 23 Nov 2017; Leykam;16:151-159.

External Link Details

The use of renewable-energy-based heat producers within district heating grids is getting more and more popular. In order to benefit from the advantages and compensate for the different disadvantages of the various types of heat producers powered by renewable energy sources like biomass, solar energy or waste heat, a combination of these systems could be favoured over using, for example, only one main biomass-based boiler. Furthermore , in many cases, the additional use of buffer storages is necessary to fully benefit from the use of these kinds of heat producers. A major challenge with such multi-producer heating grids is the cost optimal management of all heat producers and buffer storages. Therefore , a high-level control strategy is necessary, which is able to plan ahead the use of slowly reacting and/or weather dependent heat producers while minimizing operational costs and pollutant emissions. This article shows the development of a linear model predictive controller (MPC) for a district heating grid with several (renewable) decentralized heat producers and heat storages. In order to provide the MPC with the required forecast of the future heat demand, an adaptive load forecasting method has been designed. Additionally, in order to be able to incorporate solar panels, the MPC needs to have a forecast of their possible future heat output. Therefore, a physically motivated solar yield forecasting method has been designed. The required prediction models for the MPC were represented by so-called mixed logical dynamical (MLD) system models. MLD system models combine the modelling power of discrete state system models (finite state machines) and discrete time system models by the extension of the regular linear state-space system model approach with integer and continuous auxiliary variables and linear inequality constraints. The occurrence of both integer and continuous variables within the resulting optimization problem of the MPC leads to a mixed-integer linear program (MILP), which can be solved efficiently using modern MILP solvers. The resulting control strategy is tested in a thermo-hydraulic simulation environment of an actual small-scale multi-producer district heating grid consisting of a medium-scale wood chip boiler with buffer storage, a solar collector with buffer storage and a high temperature heat pump, an oil boiler and 25 heat consumers. Additionally, a state observer was designed and connected with the MPC in order to detect control errors and to incorporate feedback from the heat producers and the buffer storages. The simulations have indicated that the designed MPC and the state observer work properly. Therefore, these elements have been implemented on-site on the actual heating grid, with the first test run scheduled for October 2017.
Modellprädiktive Regelung eines solar-und biomassebasierten Fernwärmenetzes | Request PDF. Available from: https://www.researchgate.net/publication/321314304_Modellpradiktive_Regelung_eines_solar-und_biomassebasierten_Fernwarmenetzes [accessed Feb 21 2018].

Other Publications | 2020

Modern control strategies for biomass combustion systems in residential heating systems

Gölles M, Zemann C. Modern control strategies for biomass combustion systems in residential heating systems. At 6th Central European Biomass Conference IEA-Workshop: TASK 32. Oral Presenation. 23.01.2020.

Download PDF Details
Conference presentations and posters | 2012

Modern logwood stoves – Requirements, Development, Evaluation

Schmidl C, Aigenbauer S, Figl F, Haslinger W, Moser W, Verma VK. Modern logwood stoves – Requirements, Development, Evaluation, IEA Bioenergy Conference 2012, 13th-15th of November 2012, Vienna, Austria.

Details
Conference presentations and posters | 2020

Modification of ash properties in fixed bed combustion systems

Sommersacher P, Retschitzegger S. Modification of ash properties in fixed bed combustion systems. 6th Central European Biomass Conference, 22-24 January 2020, Graz.

Download PDF Details
Peer reviewed papers | 2016

Modification of Co/Al2O3 Fischer–Tropsch Nanocatalysts by Adding Ni: A Kinetic Approach

Nikparsa P, Mirzaei AA, Rauch R. Modification of Co/Al2O3 Fischer–Tropsch Nanocatalysts by Adding Ni: A Kinetic Approach. International Journal of Chemical Kinetics. 1 March 2016;48(3): 131-142.

External Link Details
Other Publications | 2018

Modular Energy Management Systems for future cross-sectoral energy systems

Muschick D, Moser A, Stadler M, Gölles M. Modular Energy Management Systems for future cross-sectoral energy systems. World Sustainable Energy Days 2018.

Details
Conference presentations and posters | 2018

Modular optimization-based energy management framework for cross-sectoral energy networks

Muschick D, Gölles M, Moser A. Modular optimization-based energy management framework for cross-sectoral energy networks. 5th International Solar District Heating Conference SDH. Graz, Austria: 2018. (Poster)

Details
Other Publications | 2018

Modulares Energiemanagementsystem für sektorübergreifende Energiesysteme

Muschick D, Moser A, Stadler M, Gölles M. Modulares Energiemanagementsystem für sektorübergreifende Energiesysteme. 15. Symposiums Energieinnovation; Februar 2018.

Details
Peer reviewed papers | 2014

Multi-physics modelling of packed bed biomass combustion

Mehrabian R, Shiehnejadhesar A, Scharler R, Obernberger I. Multi-physics modelling of packed bed biomass combustion. Fuel. 2014;122:164-78.

External Link Details

A transient 3D model for two main zones, namely the fuel bed and the freeboard, of biomass packed bed combustion systems was developed. It integrates the models for the biomass conversion sub-processes and solves the governing equations for the gas and solid phase and their interactions. The intra-particle gradients are included by considering the biomass particles as thermally thick particles. The shrinkage of the packed bed and the variations of the bed porosity due to the uneven consumption of the fuel are taken into account. Detailed kinetic mechanisms are used for the simulation of homogeneous gas phase reactions. To verify the model and to increase the understanding of packed bed combustion, laboratory-scale fixed-bed batch experiments have been performed in a reactor with 9.5 cm diameter and 10 cm length. The model performance was extensively validated with gas phase measurements (CO, CO2, CH4, H2, H2O and O2) above the fuel bed, temperatures at different heights in the bed and in the freeboard, and the propagation rate of reaction front. The simulation results are in a good agreement with the measured values. © 2014 Elsevier Ltd. All rights reserved.

Peer reviewed papers | 2023

Multi-scale modelling of a fluidized bed biomass gasifier of industrial size (1 MW) using a detailed particle model coupled to CFD: Proof of feasibility and advantages over simplified approaches

von Berg L, Anca-Couce A, Hochenauer C, Scharler R. Multi-scale modelling of a fluidized bed biomass gasifier of industrial size (1 MW) using a detailed particle model coupled to CFD: Proof of feasibility and advantages over simplified approaches. Energy Conversion and Management. 15 June 2023.286:117070

External Link Details

Fluidized bed biomass gasification is a complex process whereby gas source terms are released by reactions at the particle level during the movement of fuel particles throughout the reactor. The current study presents for the first time the application of a multi-scale modelling approach for a fluidized bed biomass gasifier of industrial size, coupling a detailed one-dimensional particle model based on the progressive conversion model (PCM) with a commercial CFD software. Results of particle movement and gas source terms are compared with results of an additional simulation employing the simplified uniform conversion model (UCM) which is commonly used in literature. Validation at the particle level showed that the UCM leads to a massive underprediction of the time needed for pyrolysis whereas the PCM is in good agreement with experimental data. This heavily influences the gas sources released during pyrolysis of the biomass particles in the coupled reactor simulations. Volatiles are much more concentrated to the close proximity of the fuel feed when using the UCM whereas the PCM leads to a more homogeneous distribution over the reactor cross-section. The calculation time analysis of the coupled simulations showed that despite the increased complexity, the PCM shows only an increase of 20% in calculation time when compared to the UCM, whereas it is much better suited for these conditions. The coupled multi-scale simulations using the PCM showed the numerical feasibility of the modelling approach for 1,200,000 bed parcels and about 80,000 reacting fuel parcels and furthermore highlighted the importance of a comprehensive description of the particle level.

Peer reviewed papers | 2022

Multi-scale modelling of fluidized bed biomass gasification using a 1D particle model coupled to CFD

von Berg L, Anca-Couce A, Hochenauer C, Scharler R. Multi-scale modelling of fluidized bed biomass gasification using a 1D particle model coupled to CFD. Fuel. 15 September 2022.324:124677

External Link Details

For many fluidized bed applications, the particle movement inside the reactor is accompanied by reactions at the particle scale. The current study presents for the first time in literature a multi-scale modelling approach coupling a one-dimensional volumetric particle model with the dense discrete phase model (DDPM) of ANSYS Fluent via user defined functions. To validate the developed modelling approach, the current study uses experimental data of pressure drop, temperature and gas composition obtained with a lab-scale bubbling fluidized bed biomass gasifier. Therefore, a particle model developed previously for pyrolysis was modified implementing a heat transfer model valid for fluidized bed conditions as well as kinetics for char gasification taken from literature. The kinetic theory of granular flow is used to describe particle–particle interactions allowing for feasible calculation times at the reactor level whereas an optimized solver is employed to guarantee a fast solution at the particle level. A newly developed initialization routine uses an initial bed of reacting particles at different states of conversion calculated previously with a standalone version of the particle model. This allows to start the simulation at conditions very close to stable operation of the reactor. A coupled multi-scale simulation of over 30 s of process time employing 300.000 inert bed parcels and about 25.000 reacting fuel parcels showed good agreement with experimental data at a feasible calculation time. Furthermore, the developed approach allows for an in-depth analysis of the processes inside the reactor allowing to track individual reacting particles while resolving gradients inside the particle.

Peer reviewed papers | 2020

Multi-stage model for the release of potassium in single particle biomass combustion

Anca-Couce A, Sommersacher P, Hochenauer C, Scharler R. Multi-stage model for the release of potassium in single particle biomass. Fuel. 2020:280:118569.

External Link Details

The release of potassium during biomass combustion leads to several problems as the emissions of particle matter or formation of deposits. K release is mainly described in literature in a qualitative way and this work aims to develop a simplified model to quantitatively describe it at different stages. The proposed model has 4 reactions and 5 solid species, describing K release in 3 steps; during pyrolysis, KCl evaporation and carbonate dissociation. This release model is coupled into a single particle model and successfully validated with experiments conducted in a single particle reactor with spruce, straw and Miscanthus pellets at different temperatures. The model employs same kinetic parameters for the reactions in all cases, while different product compositions of the reactions are employed for each fuel, which is attributed to differences in composition. The proposed model correctly predicts the online release at different stages during conversion as well as the final release for each case.

Conference presentations and posters | 2015

Nachhaltige Versorgungs und Wertschöpfungsketten

Strasser C. Nachhaltige Versorgungs und Wertschöpfungsketten, "Biomasse der Zukunft" - Internationale Konferenz auf Schloss Weinzierl 2015, 29th of Januar 2015, Wieselburg, Austria.

Details
Conference presentations and posters | 2015

Natural ventilation measures for CO off-gassing in small pellet storages

Emhofer W, Lichtenegger K, Haslinger W, Sedlmayer I. Natural ventilation measures for CO off-gassing in small pellet storages, Word Sustainable Energy Days next 2015, 24th-27th of February 2015, Wels, Austria.

Details
Other papers | 2022

Netzdienliche Nutzung von Bauteilaktivierung in Gebäuden durch vorausschauende Regelungen – Ergebnisse aus dem Projekt ÖKO-OPT-AKTIV

Kaisermayer V, Muschick D, Gölles M. Netzdienliche Nutzung von Bauteilaktivierung in Gebäuden durch vorausschauende Regelungen – Ergebnisse aus dem Projekt ÖKO-OPT-AKTIV. Abschlussworkshop - IEA DHC Annex TS3: Hybride Energie-Netze. 20. Oktober 2022, online.

Download PDF Details
Conference presentations and posters | 2009

Neue Rohstoffsortimente für die Holzpelletsproduktion – Einfluss eines erhöhten Rindenanteils auf die Verbrennungseigenschaften

Haslinger W, Friedl G, Wopienka E, Emhofer W. Neue Rohstoffsortimente für die Holzpelletsproduktion – Einfluss eines erhöhten Rindenanteils auf die Verbrennungseigenschaften, 9. Industrieforum Pellets 2009, 7th-9th of October 2009, Stuttgart, Germany.

Details

Holzpellets werden in zunehmendem Maße aus Hackschnitzel hergestellt. Es ist davon auszugehen, dass diese Veränderung der Rohstoffbasis zu erhöhten Aschegehalten im Brennstoff führt und zu Schwierigkeiten bei der Nutzung führen kann. Die vorliegende Arbeit kommt zum Schluss, dass moderate Anteile (< 5%) sauberer Rinde zu keinen wesentlichen Verschlackungen führen. Bei Verunreinigung oder / und sehr hohen Rindenanteilen ist mit
Verschlackungsproblemen jedenfalls zu rechnen.

Conference presentations and posters | 2013

New concepts for converting renewable electricity to transportation fuels by CO2 gasification

Rauch R. New concepts for converting renewable electricity to transportation fuels by CO2 gasification, 1st International Industrial Seminar Messer Benelux 2013, 18th of April 2013, Antwerp, Belgium.

Details
Peer reviewed papers | 2019

New experimental evaluation strategies regarding slag prediction of solid biofuels in pellet boilers

Schön C, Feldmeier S, Hartmann H, Schwabl M, Dahl J, Rathbauer J, Vega-Nieva D, Boman C, Öhman M, Burvall J. New experimental evaluation strategies regarding slag prediction of solid biofuels in pellet boilers. Energy & Fuels. 2019.33:11985-11995

External Link Details

Pellet boilers and pellet stoves are widely used for heat production. But in most cases, only specific wood pellets with a low ash content are approved due to the increased risk of slagging and limited deashing capacity. The ash fusion test (AFT), according to prCEN/TS 15370-1, is currently the only standard method for the prediction of slagging. This method is not feasible for all biomass fuel types, since sometimes the characteristic temperatures cannot be determined or the characteristic shapes do not occur for temperature determination. Furthermore, the method is costly and requires complex instrumental infrastructure. Hence, a demand for more expressive or more rapid methods to characterize slag formation potential of fuels is often claimed. Based on a literature study, four such laboratory test methods were chosen, partly adapted, and then experimentally investigated. These methods included thermal treatment of the fuel itself or the ashes of the fuel and were the rapid slag test, CIEMAT, the slag analyzer, and the newly developed pellet ash and slag sieving assessment (PASSA) method. Method performance was practically assessed using 14 different biomass fuel pellets, which were mainly from different assortments of wood, but also herbaceous or other nonwoody fuels. The results from the tests with these four alternative methods were evaluated by comparing to both results from standard AFT and results from full-scale combustion tests performed over a maximum of 24 h. Seven different pellet boilers were assessed, of which one boiler was used to apply all 14 test fuels. According to the granulometric ash analysis (i.e., the ratio of >1 mm-fraction toward total ash formed), the sensitivity of the new test methods to depict slagging phenomena at a suitable level of differentiation was assessed. Satisfactory conformity of the boiler ash assessment (reference) was found for both, the slag analyzer and the PASSA method. The latter may, in particular, be seen as a promising and relatively simple low-input procedure, which can provide more real-life oriented test results for fixed-bed combustion. The standardized AFT could, however, not sufficiently predict the degree of slag actually formed in the reference boiler, particularly when only wood fuels are regarded.

Other Publications | 2010

Niedertemperatur Drehrohrpyrolyse als Vorschaltprozess für die Co-Verbrennung von unkonventionellen Brennstoffen in thermischen Anlagen

Kern, S. Niedertemperatur Drehrohrpyrolyse als Vorschaltprozess für die Co-Verbrennung von unkonventionellen Brennstoffen in thermischen Anlagen, Master Thesis, Technische Universität Wien, Vienna, Austria, 2010.

Details
Other papers | 2017

Nitrogen Assessment in Small Scale Biomass Heating Systems

Enigl M, Strasser C, Hochbichler E, Schmidl C. Nitrogen Assessment in Small Scale Biomass Heating Systems. 25th European Biomass Conference & Exhibition (Poster). June 2017, Stockholm, Sweden.

Details
Other papers | 2017

Novel concepts for CO2 utilisation to produce value added products

Sonnleitner A, Dißauer C, Martini S, Drosg B, Meixner K, Rachbauer L, Lazarova Z, Herwig C, Kinger G, Kofler I, Strasser C. Novel concepts for CO2 utilisation to produce value added products. 5th Central European Biomass Conference (Poster). January 2017, Graz, Austria.

Details
Conference presentations and posters | 2020

NOx Modelling and Emission Reduction

Eßl M, NOx Modelling and Emission Reduction. 6th Central European Biomass Conference, 22-24 January 2020, Graz.

Download PDF Details
Peer reviewed papers | 2019

NPK 2.0: Introducing tensor decompositions to the kinetic analysis of gas–solid reactions

Birkelbach F, Deutsch M, Flegkas S, Winter F, Werner A. NPK 2.0: Introducing tensor decompositions to the kinetic analysis of gas–solid reactions. Int J Chem Kinet. 2019;1–11.

External Link Details

A method for deriving kinetic models of gas–solid reactions for reactor and process design is presented. It is based on the nonparametric kinetics (NPK) method and resolves many of its shortcomings by applying tensor rank‐1 approximation methods. With this method, it is possible to derive kinetic models based on the general kinetic equation from any combination of experiments without additional a priori assumptions. The most notable improvements over the original method are that it is computationally much simpler and that it is not limited to two variables. Two algorithms for computing the rank‐1 approximation as well as a tailored initialization method are presented, and their performance is assessed. Formulae for the variance estimation of the solution values are derived to improve the accuracy of the model identification and to provide a tool for diagnosing the quality of the kinetic model. The methods effectiveness and performance are assessed by applying it to a simulated data set. A Matlab implementation is available as Supporting Information.

Other Publications | 2023

Numerical investigation of reaction mechanisms on NOx emissions from biomass combustion with enhanced reduction

Eßl M, Schulze K. Numerical investigation of reaction mechanisms on NOx emissions from biomass combustion with enhanced reduction. BEST Center Day. 28 June 2023

Download PDF Details

With the increasing demand for lower emissions and innovative combustion technologies, it is necessary to have a reaction mechanisms that is accurate as well as computationally affordable for geometry and process optimization using computational fluid dynamics (CFD). The objective of this work is to explore the applicability of several reaction mechanisms in predicting NOx emissions from various combustion systems. This work focuses on the selection of suitable mechanisms from literature (see Table 1) in a full scale 3D model for the prediction of NOX especially for furnaces with low oxygen concentration in the fuel bed and enhanced reduction zones.

Other papers | 2015

Numerical modelling of biomass grate furnaces with a particle based model

Mehrabian R, Shiehnejadhesar A, Scharler R, Obernberger I. Numerical modelling of biomass grate furnaces with a particle based model, INFUB 10th European Conference on Industrial Furnace and Boilers 2015, 7th-10th of April 2015, Porto, Portugal.

Details
Conference presentations and posters | 2019

Numerical simulation and experimental analysis of a novel small scale biomass grate firing system

Eßl M, Mehrabian R, Shiehnejad-Hesar A, Kelz J, Feldmeier S, Reiterer T, Anca-Couce A, Robert Scharler R. Numerical simulation and experimental analysis of a novel small scale biomass grate firing system. 27th European Biomass Conference & Exhibition (Poster). May 2019.

External Link Details

The presented grate firing system is a patented small scale screw burner, which is designed for high fuel flexibility. This work focuses on the numerical modelling of the boiler via CFD simulations. The in-house developed CFD models use an Euler – Lagrange approach to predict the thermal degradation of the fuel particles and the subsequent gas-phase reactions. The CFD models are validated with experimental data from a representative measurement campaign where the boiler is operated with softwood pellets and the composition of the flue gas is measured in the primary and secondary combustion zone as well as the boiler outlet. The simulation results agree well with the data acquired in the measurement campaigns.
Keywords: CFD, simulation, combustion, small scale application, wood pellet

 

Other papers | 2020

Numerical simulation of fuel nitrogen conversion and NOx emissions in biomass boilers with advanced air staging technology

Essl M, Schulze K, Scharler R. Numerical simulation of fuel nitrogen conversion and NOx emissions in biomass boilers with advanced air staging technology. 3RD DOCTORAL COLLOQUIUM BIOENERGY. 2020

External Link Download PDF Details

The increased biomass utilization leads to the need of an efficient and flexible usage of available sources. Therefore, it is necessary to combust low-cost biogenic residues, which inherently have higher nitrogen contents that lead to increased NOx emissions. In order to tackle this issue a new combustion technology with double air staging and flue gas recirculation is under development. The technology also features an increased fuel bed height and very low oxygen concentrations in the fuel bed to reduce fuel bed temperatures. This work focuses on the CFD simulation of the formation and reduction of NOx emissions of in a small scale boiler (35 kWth). Compared to previously applied models, major modification concerning the heat and mass transfer in the fuel bed as well as the subsequent conversion in the freeboard were made. The fuel bed is modelled via representative fuel particles with a Lagrangian approach and a thermally thick particle model considering intra-particle
gradients. Due to the increased fuel bed height and the relatively low oxygen concentration the formation and cracking of tars has to be considered in the simulation. This heavily influences the formation and reduction of NOx and its precursors. The fuel bound nitrogen is released via the particle model in the form of NO during char burnout and via a lumped tar species during pyrolysis. The cracking of the lumped tar species is modelled via two global gas phase reactions that releases the NOx precursors NH3 and HCN. The cracking reactions are added to a skeletal reaction mechanism with 28 species and 102 reactions that includes the fate of the N species. The simulation results are compared to experimental data from test runs with spruce wood chips and Miscanthus pellets as fuels. The comparison showed good agreement for the test runs with wood chips, where the temperature distribution inside the fuel bed and the released species above the fuel bed were predicted well. The test runs with Miscanthus showed a greater deviation between the measured and simulated values. For both fuels the NOx reduction that was experimentally observed in the secondary combustion zone could not be predicted with reasonable agreement. Therefore, it is necessary to further investigate the cracking of the tars and the subsequent formation of the NOx precursors. The presented work forms the basis for further improvements of the numerical models and subsequently the optimization of the new technology.

Reports | 2015

Nutrient recovery by biogas digestate processing

Drosg B, Fuchs W, Al Seadi T, Madsen M, Linke B. Nutrient recovery by biogas digestate processing. IEA Bioenergy (2015): 7-11

External Link Details
Conference presentations and posters | 2019

Nutrient recovery by digestate processing

Drosg B, Fuchs W. Nutrient recovery by digestate processing. Second COASTAL Biogas conference (Roskilde, Denmark). Nov 2019.

Details
Conference presentations and posters | 2009

Nutzungsgradsteigerung bei Pelletsfeuerungen

Friedl G. Nutzungsgradsteigerung bei Pelletsfeuerungen, 9. Industrieforum Pellets 2009, 7th-9th of October 2009, Stuttgart, Germany.

Details
Peer reviewed papers | 2012

Odor, gaseous and PM 10 emissions from small scale combustion of wood types indigenous to central Europe

Kistler M, Schmidl C, Padouvas E, Giebl H, Lohninger J, Ellinger R, et al. Odor, gaseous and PM 10 emissions from small scale combustion of wood types indigenous to central Europe. Atmos Environ. 2012;51:86-93.

External Link Details

In this study, we investigated the emissions, including odor, from log wood stoves, burning wood types indigenous to mid-European countries such as Austria, Czech Republic, Hungary, Slovak Republic, Slovenia, Switzerland, as well as Baden-Württemberg and Bavaria (Germany) and South Tyrol (Italy). The investigations were performed with a modern, certified, 8 kW, manually fired log wood stove, and the results were compared to emissions from a modern 9 kW pellet stove. The examined wood types were deciduous species: black locust, black poplar, European hornbeam, European beech, pedunculate oak (also known as “common oak”), sessile oak, turkey oak and conifers: Austrian black pine, European larch, Norway spruce, Scots pine, silver fir, as well as hardwood briquettes. In addition, “garden biomass” such as pine cones, pine needles and dry leaves were burnt in the log wood stove. The pellet stove was fired with softwood pellets.

The composite average emission rates for log wood and briquettes were 2030 mg MJ−1 for CO; 89 mg MJ−1 for NOx, 311 mg MJ−1 for CxHy, 67 mg MJ−1 for particulate matter PM10 and average odor concentration was at 2430 OU m−3. CO, CxHy and PM10 emissions from pellets combustion were lower by factors of 10, 13 and 3, while considering NOx – comparable to the log wood emissions. Odor from pellets combustion was not detectable. CxHy and PM10 emissions from garden biomass (needles and leaves) burning were 10 times higher than for log wood, while CO and NOx rise only slightly. Odor levels ranged from not detectable (pellets) to around 19,000 OU m−3 (dry leaves). The odor concentration correlated with CO, CxHy and PM10. For log wood combustion average odor ranged from 536 OU m−3 for hornbeam to 5217 OU m−3 for fir, indicating a considerable influence of the wood type on odor concentration.

Conference presentations and posters | 2014

Off-gassing – Safety issues related with harmful emissions from wood pellets

Emhofer W. Second International Workshop on Pellet Safety “Off-gassing – Safety issues related with harmful emissions from wood pellets”, 5th of May, Fügen, Austria, 2014.

Details
Conference presentations and posters | 2014

Off-gassing –Safety issues related with emissions from wood pellets along the pellet supply chain

Emhofer W, et al. Pellets Workshop ” Off-gassing –Safety issues related with emissions from wood pellets along the pellet supply chain” (held held during the Central European Biomass Conference 2014), 15th-18th of January, Graz, Austria, 2014.

Details
Peer reviewed papers | 2020

Off-gassing reduction of stored wood pellets by adding acetylsalicylic acid

Sedlmayer I, Bauer-Emhofer W, Haslinger W, Hofbauer H, Schmidl C, Wopienka E. Off-gassing reduction of stored wood pellets by adding acetylsalicylic acid. Fuel Processing Technology 2020.198:106218.

External Link Details

During transportation and storage of wood pellets various gases are formed leading to toxic atmosphere. Various influencing factors and measures reducing off-gassing have already been investigated. The present study aims at applying an antioxidant, acetylsalicylic acid (ASA), to reduce off-gassing from wood pellets by lowering wood extractives oxidation. Therefore, acetylsalicylic acid was applied in industrial and laboratory pelletizing processes. Pine and spruce sawdust (ratio 1:1) were pelletized with adding 0-0.8% (m/m) ASA. Glass flasks measurements confirmed off-gassing reduction by adding ASA for all wood pellets investigated.The biggest effect was achieved by adding 0.8% (m/m) ASA in the industrial pelletizing experiments where the emission of volatile organic compounds (VOCtot) was reduced by 82% and a reduction of carbon monoxide (CO) and carbon dioxide (CO2) emissions by 70% and 51%, respectively, could be achieved. Even an addition of 0.05% (m/m) ASA led to off-gassing reduction by >10%. A six week storage experiment to investigate the long-term effectivity of ASA addition revealed, that antioxidant addition was effective in reducing CO-, CO2- and VOCtot-release, especially during the first four weeks of the storage experiment, after which time the relative reduction effect was significantly decreased.

Other Publications | 2016

On site monitoring and dynamic simulation of a low energy house heated by a pellet boiler

Carlon E, Schwarz M, Prada A, Golicza L, Verma V, Baratieri M, Gasparella A, Haslinger W, Schmidl C. On site monitoring and dynamic simulation of a low energy house heated by a pellet boiler. 15 March 2016;116: 296-306.

External Link Details

Prefabricated low energy houses are becoming increasingly popular thanks to their low cost and high energy performance. Heating systems installed in these houses should be optimally designed and controlled, to ensure thermal comfort for the whole heating season.

This study presents the on-site monitoring and dynamic simulation of a low energy house heated by a pellet boiler via a floor heating system. The house combines a lightweight envelope, a heat distribution system with a high thermal inertia and a biomass-based heat supply. The one-year monitoring campaign allowed to closely investigate the system's response to the heat demand. Moreover, a coupled simulation of the house and its heating and hot water supply system was set-up, calibrated, and validated against measured indoor temperature profiles and energy consumptions. Root mean square deviations between simulated and measured indoor temperature were in the range 0.4–0.8 K, while simulated energy consumptions fulfilled the criteria of the ASHRAE 14-2002 Guideline. As monitoring data evidenced the importance of better managing the high thermal inertia of the floor heating system, two improved control strategies were tested in the simulation environment and evaluated in terms of thermal comfort, pellet consumption and efficiency of the pellet boiler.

Peer reviewed papers | 2024

On the characteristic polynomial of the dynamic matrix of linear time-invariant multivariable systems in Luenberger's canonical forms

Niederwieser H, Reichhartinger M. On the characteristic polynomial of the dynamic matrix of linear time-invariant multivariable systems in Luenberger's canonical forms. Automatica. April 2024.162:11532

External Link Details

This article presents a general representation of the characteristic polynomial of the dynamic matrix for multivariable systems in Luenberger’s canonical forms. The characteristic polynomial is given by means of the determinant of a polynomial matrix of substantially lower order. Therein, the polynomial coefficients of the single elements are the coefficients of the corresponding blocks of the dynamic matrix. The proposed representation of the characteristic polynomial can be helpful for the design of state-feedback controllers and state observers which is demonstrated by a numerical example.

Peer reviewed papers | 2020

Online determination of potassium and sodium release behaviour during single particle biomass combustion by FES and ICP-MS

Paulauskas R, Striūgas N, Sadeckas M, Sommersacher P, Retschitzegger S, Kienzl N. Online determination of potassium and sodium release behaviour during single particle biomass combustion by FES and ICP-MS. Science of the Total Environment. 2020;746:141162.

External Link Details

This study focuses on the determination of alkali release from wood and straw pellets during combustion. The aim is to expand the knowledge on the K and Na release behaviour and to adopt chemiluminescence-based sensors for online monitoring of alkali detection which can be applied for the prevention of fouling formation in low quality biomass combustion plants. Flame emission spectrometry (FES) was used for optical detection of chemiluminescence spectra of K and Na using optical bandpass filters mounted on an ICCD (Intensified Charge Coupled Device) camera. FES data were verified by additional experiments with a single particle reactor (SPR) coupled with an inductively coupled plasma mass spectrometer (ICP-MS). Using both techniques, the release profiles of K and Na during a single pellet combustion at 1000 °C were determined and obtained K* and Na* emission intensities directly correlated with the results from the ICP-MS. It was determined that the emission intensity of alkali radicals depends on alkali concentrations in the samples and K and Na radical emission intensities increase with increasing alkali amounts in the samples. The ICP-MS data revealed that the release of K and Na mainly takes place during the stage of devolatilization. During devolatilization, almost all potassium and sodium are released from wood samples, while only 65–90% of K and 74–90% of Na are released from straw samples. Based on the results, the flame emission spectroscopy technique is capable to fully detect released alkali metals in the gas phase during combustion and proves a possibility to use flame emission sensors for monitoring the release of alkali species from biomass during combustion processes.

Other Publications | 2013

Online-Monitoring von Korrosionsvorgängen in Biomasse-befeuertenAnlagen

Bernsteiner, C. Online-Monitoring von Korrosionsvorgängen in Biomasse-befeuertenAnlagen, Master Thesis, Technische Universität Graz, Graz, Austria, 2013.

Details

Für den ökonomisch und ökologisch effizienteren Betrieb von Dampfkesselanlagen ist die Untersuchung von Korrosionsvorgängen in Wärmetauschern, verursacht durch das Rauchgas aus einer Biomasse-Feuerung, notwendig. Daher wurden bei Bioenergy 2020+ kurzzeitige Korrosionsversuche im Umfang von 300h Betriebszeit an einem Wärmetauscherstahl 13CrMo4-5 mit einer ONLINE-Korrosionssonde der Firma Corrmoran GmbH für die Erstellung eines empirischen Korrosionsmodells durchgeführt. Als Brennstoffe dienten Waldhackgut, Weizenstrohpellets und Altholz. Die Messung benötigt eine Ionen leitende Deckschicht, die sich erst am Beginn des Versuchs aufbaut. Aufgrund der fehlenden Deckschicht wird daher zu Beginn der Messung der Korrosionsleitwert unterschätzt. Daraus ergeben sich systematische Messfehler. Ziel dieser Arbeit war die Eruierung des Zusammenhanges zwischen Messfehler und Versuchszeit. Dabei stellten sich zwei systematische Messfehler als relevant heraus: •Die Abzehrrate ist zum Korrosionsleitwert proportional. Daher wird die Abzehrrate während der Eingangsphase der Messung unterschätzt. •Die Abzehrrate berechnet sich aus dem Korrosionsleitwert, multipliziert mit einem Kalibrierungsfaktor. Dabei ergibt sich der Kalibrierungsfaktor aus dem Verhältnis des gesamten korrosionsbedingten Materialverlustes über die gesamte Versuchsdauer, dividiert durch den über denselben Zeitraum integrierten Korrosionsleitwert. Aufgrund des zu Beginn unterschätzten Korrosionsleitwertes wird der Kalibrierungsfaktor und somit die Abzehrrate, berechnet aus dem reproduzierbaren Signal, überschätzt. Die Literaturrecherche zeigte, dass die Kinetik bei der Hochtemperaturkorrosion bei konstant gehaltenen korrosionsrelevanten Parametern einen linearen, parabolischen oder paralinearen Verlauf einnehmen kann. Die kleinstmögliche Abzehrrate und somit der kleinstmögliche Korrosionsleitwert zu Beginn der Messung ergibt sich bei der Annahme eines linearen Verlaufs, welcher die möglicherweise erhöhten Abzehrraten der Initialkorrosion nicht mitberücksichtigt. Aus dieser Annahme konnte der kleinstmögliche Korrekturfaktor cmin berechnet werden. Dazu mussten die Daten bei konstant gehaltenen Parametern gefiltert und daraus der zeitlich integrierte Korrosionsleitwert PL,Messung gebildet werden. Das Verhältnis von PL,Messung mit einem über die gesamte Versuchszeit konstant angenommenen zeitlich integrierten Korrosionsleitwertes PL,linear ergibt den Korrekturfaktor, der multipliziert mit den ursprünglich bei gleichen Parametern bestimmten Abzehrraten eine neue Abzehrrate k(t)neu ergibt. Der Vergleich mit den Ergebnissen eines Langzeitversuches unter ähnlichen Betriebsbedingungen in einem Biomasse-Heizkraftwerk zeigte dadurch eine Verbesserung der Abweichung der Kurzzeitversuche von 125% auf 55%. Aufgrund der Parametervariationen sowie der Temperaturschwankungen, verursacht durch Ein- und Ausschaltvorgänge der Anlage, haben die bei konstanten Parametern bestimmten Korrekturfaktoren für die durchgeführten Versuche nur bedingt Gültigkeit. Daher wurde in einem weiteren Schritt ein Korrekturfaktor cmin,var bestimmt, welcher alle Daten der Versuchsserie berücksichtigt. Dazu wurde das Signal der Eingangsphase durch ein gleichlanges reproduzierbares Signal, gemessen unter denselben Bedingungen am Ende der Versuchsserien, ersetzt. Es ergibt sich aus dem Verhältnis der zeitlich integrierten Korrosionsleitwerte PL,Messung der Originalkurve zu PL,idealisiert des idealisierten Verlaufs der Korrekturfaktor cmin,var. Dieser hat aufgrund der Berücksichtigung aller gesammelten Daten für alle bei den Versuchen bestimmten Abzehrraten Gültigkeit. Durch cmin,var konnte eine Reduktion der Abweichung auf 110% erreicht werden. Diese wird auf die im Gegensatz zur Langzeitmessung im Biomasse-Heizkraftwerk unterschiedliche Versuchsmethode sowie auf den unbekannten Einfluss der möglicherweise erhöhten Abzehrraten der Initialkorrosion zurückgeführt.  

Conference presentations and posters | 2015

Operation and Efficiency of a Wood-Pellet Fired 5 KWel Stirling

Aigenbauer S, Schnetzinger R, Höftberger E, Schmidl C, Haslinger W. Operation and Efficiency of a Wood-Pellet Fired 5 KWel Stirling, 23rd European Biomass Conference 2015, 1st-4th of June 2015, Vienna, Austria. (visual presentation)

Details
Conference presentations and posters | 2013

Operation characteristics of a bulk catalyst in a test stand under similar conditions to a firewood stove

Wöhler M, et al. Operation characteristics of a bulk catalyst in a test stand under similar conditions to a firewood stove, Word Sustainable Energy Days next 2013, 27th-28th of February 2013, Wels, Austria.

Details
Conference presentations and posters | 2012

Operation Experience & Developments at Industrial Plants with Dual‐Fluid Gasification

Hofbauer H. Operation Experience & Developments at Industrial Plants with Dual‐Fluid Gasification, 20th European Biomass Conference 2012, 18th-22nd of June 2012, Milano, Italy.

Details
Peer reviewed papers | 2021

Operation of coupled multi-owner district heating networks via distributed optimization

Kaisermayer V, Muschick D, Horn M, Gölles M. Operation of coupled multi-owner district heating networks via distributed optimization. Energy Reports. 2021 Okt;7(Suppl. 4):273-281. https://doi.org/10.1016/j.egyr.2021.08.145

External Link Details

The growth of district heating and cooling (DHC) networks introduces the possibility of connecting them with neighbouring networks. Coupling networks can save costs by reducing operating hours of peak load or backup boilers, or free up production capacity for network expansion. Optimization-based energy management systems (EMS) already provide operators of individual DHC networks with solutions to the unit commitment and economic dispatch problem. They are especially useful for complex networks with multiple producers and integrated renewable energy sources, where incorporating forecasts is important. Time-dependent constraints and network capacity limitations can easily be considered. For coupled networks, a centralized optimization would provide a minimum with respect to an objective function which can incorporate fuel costs, operational costs and costs for emissions. However, the individual coupled networks are generally owned by different organizations with competing objectives. The centralized solution might not be accepted, as each company aims to optimize its own objective. Additionally, all data has to be shared with a centralized EMS, and it represents a single point of failure. A decentralized EMS may therefore be a better choice in a multi-owner setting. In this article, a novel decentralized EMS is presented that can handle multi-owner structures with cooperative and non-cooperative coupling. Each local EMS solves its own optimization problem, and an iterative Jacobi-style algorithm ensures consensus among the networks. The distributed EMS is compared to a centralized EMS based on a representative real-world example consisting of three coupled district heating networks operated by two companies.

Other Publications | 2021

Operation of Coupled Multi-Owner District Heating Networks via Distributed Optimization

Muschick D, Gölles M, Kaisermayer V, Horn M. Operation of Coupled Multi-Owner District Heating Networks via Distributed Optimization.17th International Symposium on District Heating and Cooling. Nottingham Trent University, Nottingham, United Kingdom. 7. Sep 2021. Oral Presentation. [online]

Download PDF Details

The simultaneous operation of multiple connected heating networks can be handled by optimization techniques. However, a global optimum might not represent a good operating strategy if the networks belong to different owners and thus might habe competing interests. An approach from game theory then needs to be applied, which finds a generalized Nash equilibrium instead.

Other Publications | 2023

Operational optimization and error detection in biomass boilers by model based monitoring: methods and practice

Zemann C, Niederwieser H, Gölles M. Operational optimization and error detection in biomass boilers by model based monitoring: methods and practice. 7. Mitteleuropäische Biomassekonferenz: CEBC 2023. 20. Jan 2023. Oral presentation.

Download PDF Details

One of the main tasks for operators of medium- and large-scale biomass boilers is the continuous operational monitoring of these plants in order to assess their performance, detect errors and identify possibilities for operational optimization. However, due to the high complexity of this task, errors are frequently detected too late or not at all, which can lead to even more costly secondary errors. In addition, possibilities for optimization remain unused in many existing plants, resulting in unnecessary pollutant emissions and low efficiencies.
To assist operators in performing this task and to achieve a high level of automation, methods for the automated, model-based monitoring of such plants have been focus of recent research activities. In this contribution, we will discuss the numerous possibilities provided by the application of such methods in a practical context. For this purpose, we present selected results from previous activities, demonstrating how methods for model-based monitoring were applied at combustion plants and used to enable automated error detection and support operational optimization.


Exemplary result 1: We developed a soft-sensor which accurately estimates the non-measurable internal state of heat exchangers and implemented it at a large-scale combustion plant with a nominal capacity of 38.2 MW. This soft-sensor uses a dynamic mathematical model of the heat exchanger in combination with measured data to determine a new estimate for the heat exchanger’s internal state every second. Based on this estimate, the soft-sensor accurately detects fouling and determines the non-measurable flue gas mass flow in real time. The estimated flue gas mass flow was used in a model-based control strategy which resulted in significant improvements of the combustion plant’s operational behaviour and load modulation capabilities. These results are discussed in this contribution.


Exemplary result 2: We developed a method for the real-time estimation of non-measurable fuel properties, i.e. chemical composition, bulk density, lower heating value, in biomass boilers. These estimates were subsequently used in a model-based control strategy and enabled the improvement of the biomass boiler’s fuel flexibility. Results of this estimator achieved for different biomass fuels, e.g. poplar wood chips, corncob grits and standard wood pellets, are discussed in this contribution.
On the basis of these selected results, it will be examined which possibilities arise from the use of methods for model-based monitoring in biomass boilers and also how these results can be extended to other technologies such as biomass gasifiers.

Reports | 2021

OptEnGrid Optimal integration of heat, electricity and gas systems to increase efficiency and reliability

Download PDF Details

OptEnGrid is a cross-sectoral multi-energy system optimization tool for the optimal planning and dispatch of the Distributed Energy Resource (DER) technologies in smart- and microgrids. The methodology of OptEnGrid considers an optimization model which is based on Mixed-Integer Linear Programming (MILP) framework. The following sub-sections provide more details about the energy flow and system optimization inside OptEnGrid and the choice of the optimization over simulation

Peer reviewed papers | 2023

Optimal dispatch of a multi-energy system microgrid under uncertainty: a renewable energy community in Austria

Houben N, Cosic A, Stadler M, Mansoor M, Zellinger M, Auer H, Ajanovic A, Haas R. Optimal dispatch of a multi-energy system microgrid under uncertainty: a renewable energy community in Austria. Applied Energy. 1 May 2023.337:120913

External Link Details

Microgrids can integrate variable renewable energy sources into the energy system by controlling flexible assets locally. However, as the energy system is dynamic, an effective microgrid controller must be able to receive feedback from the system in real-time, plan ahead and take into account the active electricity tariff, to maximize the benefits to the operator. These requirements motivate the use of optimization-based control methods, such as Model Predictive Control to optimally dispatch flexible assets in microgrids. However, the major bottleneck to achieve maximum benefits with these methods is their predictive accuracy. This paper addresses this bottleneck by developing a novel multi-step forecasting method for a Model Predictive Control framework. The presented methods are applied to a real test-bed of a renewable energy community in Austria, where its operational costs and CO2 emissions are benchmarked with those of a rule-based control strategy for Flat, Time-of-Use, Demand Charge and variable energy price tariffs. In addition, the impact of forecast errors and electric battery capacity on energy community operational savings are examined. The key results indicate that the proposed controller can outperform a rule-based dispatch strategy by 24.7% in operational costs and by 8.4% in CO2 emissions through optimal operation of flexibilities if it has perfect foresight. However, if the controller is deployed in a realistic environment, where forecasts for electrical load and PV generation are required, the same savings are reduced to 3.3% for cost and 7.3% for CO2, respectively. In such environments, the proposed controller performs best in highly dynamic tariffs such as Time-of-Use and Real-time pricing rates, achieving real cost savings of up to 6.3%. These results show that the profitability of optimization-based control of microgrids is threatened by forecast errors. This motivates future research on control strategies that compensate for forecast errors in real-world operation and more accurate forecasting methods.

Other Publications | 2021

Optimal operation of cross-ownership district heating and cooling networks

Muschick D, Kaisermayer V, Gölles M, Horn M.Optimal operation of cross-ownership district heating and cooling networks. 20th European Roundtable on Sustainable Consumption and Production. 9. Sep 2021. Graz. Oral Presentation.

Download PDF Details
Peer reviewed papers | 2020

Optimal operation of residential heating systems with logwood boiler, buffer storage and solar thermal collector

Zemann C, Deutsch M, Zlabinger S, Hofmeister G, Gölles M, Horn M. Optimal operation of residential heating systems with logwood boiler, buffer storage and solar thermal collector. Biomass and Bioenergy, 2020,140:105622.

External Link Details

Modern central heating systems with logwood boilers are comprised of the boiler, a buffer storage and solar thermal collectors. Conventional control strategies for these heating systems do not coordinate the utilization of all components. This can lead to a sub-optimal operation of the entire heating system resulting in a loss of efficiency and increased pollutant emissions. This contribution presents a control strategy which considers all components of the heating system including the user and forecasts for the solar yield and heat demand. It determines and carries out an optimal operating strategy that improves the user utility and maximizes the heating system efficiency while also ensuring a clean and efficient combustion. The control strategy continuously learns the user behavior and instructs the user when to refill the logwood boiler and how much fuel to use. The new control strategy was verified through test runs performed at an experimental setup consisting of a commercially available logwood boiler with a nominal capacity of 28 kW , two buffer storages with a capacity of 1.5 m3 each and a heating device with a thermal output of up to 12 kW simulating a solar thermal collector. During these test runs, the CO emissions were reduced 93.6 %by in the main combustion phase, 7.1 % more solar yield was utilized, the buffer losses were reduced by - 16.9 % and the overall efficiency was increased by 3.1 % . Thus, the application of this control strategy resulted in a significantly improved user utility and heating system efficiency.

Peer reviewed papers | 2021

Optimal planning of thermal energy systems in a microgrid with seasonal storage and piecewise affine cost functions

Mansoor M, Stadler M, Zellinger M, Lichtenegger K, Auer H, Cosic A. Optimal planning of thermal energy systems in a microgrid with seasonal storage and piecewise affine cost functions. Energy. 2021:215;119095.

External Link Details

The optimal design of microgrids with thermal energy system requires optimization techniques that can provide investment and scheduling of the technology portfolio involved. In the modeling of such systems with seasonal storage capability, the two main challenges include the low temporal resolution of available data and the non-linear cost versus capacity relationship of solar thermal and heat storage technologies. This work overcomes these challenges by developing two different optimization models based on mixed-integer linear programming with objectives to minimize the total energy costs and carbon dioxide emissions. Piecewise affine functions are used to approximate the non-linear cost versus capacity behavior. The developed methods are applied to the optimal planning of a case study in Austria. The results of the models are compared based on the accuracy and real-time performance together with the impact of piecewise affine cost functions versus non-piecewise affine fixed cost functions. The results show that the investment decisions of both models are in good agreement with each other while the computational time for the 8760-h based model is significantly greater than the model having three representative periods. The models with piecewise affine cost functions show larger capacities of technologies than non-piecewise affine fixed cost function based models.

Reports | 2022

Optimiertes Regelungs- und Betriebsverhalten thermisch aktivierter Gebäude zukünftiger Stadtquartiere (ÖKO-OPT-AKTIV)

Muschick D, Kaisermayer V, Moser A, Gölles M, Heimrath R, Brandl D, Mach T, Ribas-Tugores C, Ramschak T, Oswald S, Polster M, Lackner F, Eibisberger K, Nebel M. Optimiertes Regelungs- und Betriebsverhalten thermisch aktivierter Gebäude zukünftiger Stadtquartiere (ÖKO-OPT-AKTIV). Stadt der Zukunft 6. Ausschreibung. BMK. Schriftenreihe 60/2023. Jänner, 2022. Deutsch, 76 Seiten.

External Link Details
Other Publications | 2013

Optimierung des Emissionsverhaltens eines Ofens mittels primären und sekundären Maßnahmen am Beispiel des Scheitholzofens

Rieger, B. Optimierung des Emissionsverhaltens eines Ofens mittels primären und sekundären Maßnahmen am Beispiel des Scheitholzofens, Master Thesis, Fachochschule Technikum Wien, Vienna, Austria, 2013.

Details

The use of biomass in manually charged room heating appliances to cover the domestic heating demand has traditionally been of a high percentage in the European Union. As a result of continued or even increased use of firewood stoves, the enhancement of available stoves is a declared objective of the European Union.
Therefore, an example-optimization of the firewood stove Stûv 16/78-in (available on the European market) was performed in preparation of this paper. There was a primary- and a secondary optimization carried out to quantify the potential of optimization. When optimizing, the gas and particulate emissions was considered. The operating behavior were measured and evaluated by performing combustion experiments on a specially designed test rig.
The primary optimization is divided into five sub-steps. Each Step was quantified by gas analysis. The achieved reduction of particulate emissions was measured before and after the entire primary optimization.
In comparison to the delivery condition it was possible to reduce the CO emissions to one quarter and the particulate emissions from 100 mg / mn³ to 39 mg / mn³ over the course of the primary optimization.
As a secondary optimization, a Catalyst was implemented. The used catalyst is a solid-state catalyst in the modification of a heterogeneous supported catalyst in the shape of honeycomb, which is marketed by Clariant International Ltd. under the name "EnviCat ® Longlife Plus". The catalytically active materials platinum and palladium are used.
After a strictly implemented primary optimizations, a further reduction to half of emissions was achieved by the integration of the catalyst even though a bypass of 20 % had to be integrated to ensure the operating safety.

Other Publications | 2008

Optimierung einer biomassebefeuerten 10 kWth-Mikro-Kraft-Wärme-Kopplung mit Thermoelektrischem Generator

Lohr, M. Optimierung einer biomassebefeuerten 10 kWth-Mikro-Kraft-Wärme-Kopplung mit Thermoelektrischem Generator, Master Thesis, Fachhochschule Oberösterreich, Wels, Austria, 2008.

Details

The availability of energy is important to our every day lives. Biomass-fuelled heating systems are comfortable and reach an efficiency form over 90 %. With a thermoelectric generator (TEG) it’s possible to convert a part of the heat directly into electrical power and so become self sufficient from electicity. The purpose of this thesis was to optimise an existing prototype of a combined heat and power (CHP) plant based on a pellet heating system and a thermoelectric generator. Balancing the energy flows, especially the losses, was also part of the thesis.
Tests with the prototype were done. Some with the originial prototype, some with additional insulation and some with preheating the combustion air. To examine the part load behaviour, tests were done at 10, 7 and 4 kW fuelheat input.
By insulating the TEG the performance rose from 153 W to 174 W. The insulation and the preheating of the combustion air from room temperature to 350 degree lead to an power output from 194 watt. All at 10 kW fuellheat input. Finally the following conclusions can be drawn: For the series product it is recommended to optimize the insulation of the TEG. As the preheating of the combustion air didn’t lead to the expected effects it should be left out.

Conference presentations and posters | 2010

Optimisation of biomass grate furnaces with a new 3D packed bed combustion model - on example of a small-scale underfeed stoker furnace

Mehrabian R, Scharler R, Weissinger A, Obernberger I. Optimisation of biomass grate furnaces with a new 3D packed bed combustion model - on example of a small-scale underfeed stoker furnace, 18th European Biomass Conference and Exhibition 2010, 3rd-7th of May 2010, Lyon, France. p 1175-1183.

Details

The design and optimisation of a biomass grate furnace requires accurate and efficient models for the
combustion process on the grate as well as the turbulent reactive flow in the combustion chamber. Computational Fluid Dynamics (CFD) have been successfully applied for gas phase combustion. However, no numerical models for the biomass packed bed combustion, which can be used as engineering design tools, are commercially available at present. This paper presents an innovative 3D CFD model for biomass packed bed combustion consisting of an Euler-Granular model for hydrodynamics of gas-particle multiphase flow and a thermally thin particle model for combustion of biomass particles. Modelling the particle trajectories and the thermal conversion of each particle in the bed constitutes the simulation of the entire bed combustion. The simulation of a small-scale underfeed stoker furnace of KWB has been successfully performed by the application of the new packed bed combustion model. The positions of the drying, pyrolysis and char burnout zones in the fuel bed as well as the temperature distribution among the particles seem to be plausible and could be confirmed by observations. Furthermore, a good qualitative agreement concerning the flue gas temperatures measured by thermocouples at different positions in the combustion chamber, and CO emissions measured at boiler outlet could be achieved. The new packed bed model provides the advantages of considering the release profiles of species and energy from the fuel bed close to reality and enables to consider the chemical compositions, size and physical properties of the fuel particles as well as the influence of primary air
distribution and grate motion on the particle trajectories.

Peer reviewed papers | 2017

Optimisation of continuous gas fermentation by immobilisation of acetate-producing Acetobacterium woodi

Steger, F, Rachbauer L, Windhagauer M, Montgomery LFR, Bochmann G. Optimisation of continuous gas fermentation by immobilisation of acetate-producing Acetobacterium woodi. Anaerobe. August 2017;46: 96-103

External Link Details
Other Publications | 2017

Optimisation of continuous gas fermentation by immobilisation of acetate-producing Acetobacterium woodii.

Steger, F, Rachbauer L, Windhagauer M, Montgomery LFR, Bochmann G. Optimisation of continuous gas fermentation by immobilisation of acetate-producing Acetobacterium woodii. Anaerobe. Available online 22 June 2017

External Link Details
Other papers | 2017

Optimisation of the post-consumer and demolition wood supply and value chain

Dißauer C, Kienzl N, Kunter A, Meirhofer M, Pointner C, Schwarzbauer P, Sommersacher P, Strasser C, Wellacher M. Optimisation of the post-consumer and demolition wood supply and value chain. 5th Central European Biomass Conference (Poster). January 2017, Graz, Austria.

Details
Conference presentations and posters | 2014

Optimising the heating system of a low energy house

Rimoldi M, Carlon E. Optimising the heating system of a low energy house, Word Sustainable Energy Days next 2014, 26th-28th of February 2014, Wels, Austria.

Details
Other Publications | 2019

Optimization Based Design and Control of Distributed Energy Resources and Microgrids

Stalder M, Optimization Based Design and Control of Distributed Energy Resources and Microgrids. LetsCluster, Lighthouse Summit in the heart of Europe: Smart Energy Generation - Management - Optimization, Smart Home / Building, Interface to the Smart Grid, Microgrids, Electric Grid of the Future, Sector Linking, Graz, Österreich, 25 - 27 März 2019

Details

 

Conference presentations and posters | 2020

Optimization based planning of energy systems

Zellinger M, Optimization based planning of energy systems. 6th Central European Biomass Conference, 22-24 January 2020, Graz.

Download PDF Details
Peer reviewed papers | 2015

Optimization of a 50 MW bubbling fluidized bed biomass combustion chamber by means of computational particle fluid dynamics

Kraft S, Kuba M, Kirnbauer F, Bosch K, Hofbauer H. Optimization of a 50 MW bubbling fluidized bed biomass combustion chamber by means of computational particle fluid dynamics. Biomass and Bioenergy. 4 August 2015;89:31-39.

External Link Details

An efficient utilization of biomass fuels in power plants is often limited by the melting behavior of the biomass ash, which causes unplanned shutdowns of the plants. If the melting temperature of the ash is locally exceeded, deposits can form on the walls of the combustion chamber. In this paper, a bubbling fluidized bed combustion chamber with 50 MW biomass input is investigated that severely suffers deposit build-up in the freeboard during operation. The deposit layers affect the operation negatively in two ways: they act as an additional heat resistance in regions of heat extraction, and they can come off the wall and fall into the bed and negatively influence the fluidization behavior. To detect zones where ash melting can occur, the temperature distribution in the combustion chamber is calculated numerically using the commercial CPFD (computational particle fluid dynamics) code, Barracuda Version 15. Regions where the ash melting temperature is exceeded are compared with the fouling observed on the walls in the freeboard. The numerically predicted regions agree well with the observed location of the deposits on the walls. Next, the model is used to find an optimized operating point with fewer regions in which the ash melting temperature is exceeded. Therefore, three cases with different distributions of the inlet gas streams are simulated. The simulations show if the air inlet streams are moved from the freeboard to the necking area above the bed a more even temperature distribution is obtained over the combustion chamber. Hence, the areas where the ash melting temperatures are exceeded are reduced significantly and the formation of deposits in the optimized operational mode is much less likely.

Filter

Kontaktieren Sie uns

Sie erreichen unser Office unter der Adresse office@best-research.eu

Nutzen Sie auch die Möglichkeit, direkt von dieser Webseite eine Nachricht an unsere Mitarbeiter*innen zu schicken. Schnell und unkompliziert.

Zur Team-Seite