Sortierung Titel Year

Publikationen


Conference contributions | 2011

Sensorbasierte Sortierung zur Erzeugung einer Deponiefraktion aus einer MBA-Schwerfraktion - Praxiserfahrungen und Vergleich verschiedener Aufbereitungsalternativen

Meirhofer M, Ragossnig A, Pieber S, Sommer M. Sensorbasierte Sortierung zur Erzeugung einer Deponiefraktion aus einer MBA-Schwerfraktion - Praxiserfahrungen und Vergleich verschiedener Aufbereitungsalternativen, Waste-to-Resources 2011, 24th-27th of May 2011, Hannover, Germany.

Details

The processing of heterogeneous waste is a major challenge for waste treatment equipment used in mechanical-biological (MB) waste treatment plants. This conference contribution focuses on the technical feasibility and efficiency of different technologies for the processing of a heavy waste fraction from a MB-plant which contains a high portion of high caloric components. The aim is to meet the requirements for waste to be landfilled in Austria. Also economic considerations with regard to the implementation of an additional separation step and the resulting changes in the waste routing are discussed. The processing technologies looked at comprise sensor-based sorting technologies (NIR, X-ray transmission) as well as traditional mechanical density separation technologies such as a jigger and cross-flow air classification.


Contributions to trade journals | 2010

Sewage Sludge Ash to phosphorus fertiliser (II): variables influencing heavy metal removal during thermochemical treatment

Mattenberger H, Fraissler G, Jöller M, Brunner T, Obernberger I, Herk P, et al. Sewage sludge ash to phosphorus fertiliser (II): Influences of ash and granulate type on heavy metal removal. Waste Manage. 2010;30(8-9):1622-33.

External Link

Details


Contributions to trade journals | 2008

Sewage Sludge Ash to phosphorus fertiliser: variables influencing heavy metal removal during thermochemical treatment

Mattenberger H, Fraissler G, Brunner T, Herk P, Hermann L, Obernberger I. Sewage sludge ash to phosphorus fertiliser: Variables influencing heavy metal removal during thermochemical treatment. Waste Manage. 2008;28(12):2709-22.

External Link

Details


Peer Reviewed Scientific Journals | 2015

Short term online corrosion measurements in biomass fired boilers. Part 1: Application of newly developed mass loss probe

Retschitzegger S, Gruber T, Brunner T, Obernberger I. Short term online corrosion measurements in biomass fired boilers. Part 1: Application of a newly developed mass loss probe. Fuel Process Technol 2015;137:148-156.

External Link

Details


Peer Reviewed Scientific Journals | 2016

Short term online corrosion measurements in biomass fired boilers. Part 2: Investigation of the corrosion behavior of three selected superheater steels for two biomass fuels

Retschitzegger, S., Gruber, T., Brunner, T., Obernberger, I. Short term online corrosion measurements in biomass fired boilers. Part 2: Investigation of the corrosion behavior of three selected superheater steels for two biomass fuels. Fuel Processing Technology. Volume 142, February 2016, Pages 59-70.

External Link

Details

The high temperature corrosion behavior of the boiler steels 13CrMo4-5 (1.7335), P91 (1.4903) and 1.4541 has been investigated during short-term test runs (~ 500 h) at a biomass fired grate furnace combined with a drop tube. For the test runs performed with 13CrMo4-5 and P91 chemically untreated wood chips have been used as fuel, whereas waste wood has been used for test runs with P91 and 1.4541. Online corrosion probes and a mass loss probe have been used applying a methodology developed in a previous study to correct for a measurement error occurring during short-term measurements with online corrosion probes (mass loss correction). Furthermore, deposit probe measurements have been performed to evaluate the deposit build-up rate and the chemical composition of deposits. SEM/EDX analyses of the corrosion probes have been performed subsequently to the test runs to gain information regarding the chemical composition and structure of the deposits as well as the corrosion layers.

The furnace has been operated at constant load to ensure constant combustion conditions. The flue gas temperature at the probes has been varied between 740 and 900 °C and the probe surface temperature has been varied between 400 and 560 °C in order to determine their influence on the corrosion rate.

General trends determined by the variation of these temperatures were similar for all boiler steels: the corrosion rate increased with increasing flue gas temperature and also with increasing probe surface temperature. For chemically untreated wood chips combustion at low flue gas temperatures (740 °C) the corrosion rates were comparable for 13CrMo4-5 and P91 at all probe surface temperatures. However, at flue gas temperatures of 800 °C and higher P91 showed better corrosion resistance than 13CrMo4-5. For waste wood combustion 1.4541 generally showed a better corrosion resistance than P91.

The mass loss correction of the measurement error occurring in the initial phase resulted in different errors of 55% for 13CrMo4-5 and 32% for P91 for chemically untreated wood chips. For waste wood the mass loss correction resulted in errors of 55% for P91 and 77% for 1.4541. The results from the mass loss determination for the waste wood test runs scattered stronger compared to the wood chips test runs. Therefore, the fits were not that accurate and the error margin was higher. However, the results outline that the mass loss correction is relevant in order to achieve a meaningful comparison of different short-term test runs using online corrosion probes.


Conference contributions | 2014

Sicherheit bei der Lagerung von Pellets

Emhofer W. Sicherheit bei der Lagerung von Pellets, Highlights der Energieforschung VIII - Erneuerbares Heizen und Kühlen 2014, 11th of July 2014, Vienna, Austria

Details


Peer Reviewed Scientific Journals | 2015

Simultaneous online determination of S, Cl, K, Na, Zn and Pb release from a single particle during biomass combustion Part 1: Experimental setup implementation and evaluation

Sommersacher P, Kienzl N, Brunner T, Obernberger I. Simultaneous online determination of S, Cl, K, Na, Zn and Pb release from a single particle during biomass combustion Part 1: Experimental setup implementation and evaluation. Energy and Fuels. 15 October 2015;29:6734-6746.

External Link

Details

The interest in experimental data regarding thermal fuel decomposition as well as the release behavior of ash-forming elements of biomass fuels for modeling and simulation purposes is continuously increasing. On the basis of combustion experiments with lab-scale reactors and single-particle reactors, integral release data regarding ash-forming vapors can be obtained, whereby the release is calculated on the basis of analysis data of the fuel and the ash residues. At the moment, almost no time-resolved release data of ash-forming elements from single particles exist. Therefore, a single-particle reactor was designed, which has been coupled to an inductively coupled plasma mass spectrometer (ICP-MS). This reactor can be used for targeted experiments in a temperature range of 250–1050 °C under inert, reducing, and oxidizing conditions. With this reactor, it is possible to simultaneously determine the surface and center temperatures of a biomass particle, weight loss of the particle, and flue gas composition. The reactor has been coupled to an ICP-MS through a gas stream that is sufficiently diluted with Ar. First performance tests with pure salts (KCl, NaCl, (NH4)2SO4, ZnCl2, and PbCl2) proved that relevant volatile ash-forming elements can be detected with the ICP-MS. For a further validation of the received signals, combustion tests with Miscanthus pellets have been carried out, whereby the controlled interruption of the experiments has also been investigated. These tests prove that with this system the simultaneous time-resolved determination of S, Cl, K, Na, Zn, and Pb is possible whereby the Cl signal can only be used with restrictions. On the basis of the determined release of ash-forming elements for the entire combustion experiment, a quantification/calibration of the measured intensities has been carried out. The data gained from these tests will provide deeper insights into release processes as well as form a relevant basis for release model development.


Peer Reviewed Scientific Journals | 2016

Simultaneous Online Determination of S, Cl, K, Na, Zn, and Pb Release from a Single Particle during Biomass Combustion. Part 2: Results from Test Runs with Spruce and Straw Pellets

Sommersacher P, Kienzl N, Brunner T, Obernberger I. Simultaneous Online Determination of S, Cl, K, Na, Zn, and Pb Release from a Single Particle during Biomass Combustion. Part 2: Results from Test Runs with Spruce and Straw Pellets. Energy and Fuels. 21 April 2016;30(4): 3428-3440.

External Link

Details

To gain better insight into inorganic element release processes, test runs with a specially designed single particle reactor connected with an inductively coupled plasma mass spectrometer (ICP-MS) have been performed. Relevant combustion related parameters such as mass loss during thermal degradation, temperature development of the particle (surface and center), and composition of released gases were recorded. By coupling the reactor to an ICP-MS, time-resolved release profiles of relevant aerosol forming elements (S, Cl, K, Na, Zn, and Pb) were determined. Targeted and controlled interruptions of the experiments (quenching) after a certain time were performed to validate reactor performance and reliability of the measurements. Test runs with softwood and straw pellets (8 mm in diameter and about 20 mm in length) were performed at reactor temperatures of 700, 850, and 1000 °C under oxidizing conditions (5.6 or 4.2 vol % O2). These test runs have revealed that the release ratios of volatile and semivolatile ash forming elements (S, Cl, K, Na, Zn, and Pb) generally increase as reactor temperatures rise. Moreover, regarding straw, higher Si and Al contents influence the release behavior of K, Na, Zn, and Pb. For K, existing release mechanisms proposed in the literature have been confirmed, and for Na it has been suggested that release mechanisms similar to K prevail. Especially during the starting phase of the experiment, a distinct temperature gradient exists from the surface to the center of the particle. Thus, different conversion phases occur in parallel in different layers of the particle, which has to be considered during the interpretation of the time-resolved release profiles of the main inorganic elements. Furthermore, transport limitations due to the occurrence of molten phases (especially for straw at reactor temperatures of 1000 °C) were obvious and could be directly derived from the online recorded release profiles. The targeted interruption of the ongoing decomposition process (quenching) provided an indication of the validity of the release profiles for S, K, Na, Zn, and Pb. Additionally, these experiments delivered valuable information regarding possible release mechanisms.


Peer Reviewed Scientific Journals | 2019

Single large wood log conversion in a stove: Experiments and modelling

Anca-Couce A, Caposciutti G, Gruber T, Kelz J, Bauer T, Hochenauer C, Scharler R. Single large wood log conversion in a stove: Experiments and modelling. Renewable Energy 2019.143:890-897.

External Link

Details

Natural draft wood log stoves for residential bioheat production are very popular due to the low fuel costs, the ecological aspect of a renewable energy source and the visual appeal of the flame. However, they have rather high pollutant emissions, specially of unburnt products. The description of large wood logs conversion in stoves needs to be improved to allow a process optimization which can reduce these emissions. The transient conversion of a single wood log in a stove is experimentally investigated with test runs quenching the log after defined time intervals and measuring the flue gas composition and temperatures in the log and stove. The experiments have been described with a volumetric single particle model, which predicts with good accuracy the log conversion until a time of around 30 min, when pyrolysis is almost ending. At that point, log fragmentation takes place and smaller fragments are detached from the log falling onto the bed of embers. Despite the increase in external surface area, char oxidation takes place at a moderate rate. This last stage of wood log conversion in a stove is the most challenging to model. Finally, preliminary recommendations are provided for reducing CO emissions in wood log stoves.


Conference contributions | 2019

Smart Logwood Boiler - A holistic approach for improving the efficiency of residential heating systems. 27th European Biomass Conference & Exhibition.

Zemann C, Deutsch M, Zlabinger S, Hofmeister G, Gölles M, Horn M. Smart Logwood Boiler - A holistic approach for improving the efficiency of residential heating systems. 27th European Biomass Conference & Exhibition. Lisbon. 2019. (Oral presentation, 27.05.2019).

Details


Conference contributions | 2012

Sofc‐field tests with Biomass gasification derived product gas for the evaluation of stationary BIG‐SOFC‐CHP‐concepts

Martini S. Sofc‐field tests with Biomass gasification derived product gas for the evaluation of stationary BIG‐SOFC‐CHP‐concepts, 5th international Freiberg Conference on IGCC & XtL 2012, 21st-24th of May 2012, Leipzig, Germany. (oral presentation)

Details


Conference contributions | 2012

Sofc‐field tests with Biomass gasification derived product gas for the evaluation of stationary BIG‐SOFC‐CHP‐concepts

Martini S. Sofc‐field tests with Biomass gasification derived product gas for the evaluation of stationary BIG‐SOFC‐CHP‐concepts, 5 th international Freiberg Conference on IGCC & XtL Technologies 2012, 21st-24th of May 2012, Freiberg, Germany.

Details


Conference contributions | 2015

Sommersacher P, Kienzl N, Brunner T, Obernberger I

Sommersacher P, Kienzl N, Brunner T, Obernberger I. Online determination of the release of inorganic elements using a single particle reactor coupled with an ICP-MS, 23rd European Biomass Conference 2015, 1st-4th of June 2015, Vienna, Austria. (oral presentation)

Details


Peer Reviewed Scientific Journals | 2017

Sorghum, a sustainable feedstock for biogas production? Impact of climate, variety and harvesting time on maturity and biomass yield

Wannasek L Ortner M Amon B Amon T. Sorghum, a sustainable feedstock for biogas production? Impact of climate, variety and harvesting time on maturity and biomass yield. BIOMASS BIOENERG. 2017; 106: 137-145

External Link

Details


Contributions to trade journals | 2017

Startups in Kalifornien – Kollaborationsmodell im Energiebereich

Stadler M., Temper M., Haslinger W. Startups in Kalifornien – Kollaborationsmodell im Energiebereich. Impulsreferat Energy.Inc.Ubator, Start-ups als Katalysator in F&E für marktfähige Energiesystemlösungen. Co-Creation-Workshop. Bundesministerium für Verkehr, Innovation und Technologie. Österreich, 22. September 2017.

Details


Conference Papers | 2015

State of the art biomass gasification for CHP production – the Ulm plant

Kirnbauer F, Maierhans F, Kuba M, Hofbauer H. State of the art biomass gasification for CHP production – the Ulm plant. Regatec 2015. 7-8 May 2015, Barcelona, Spain.

External Link

Details


Conference Papers | 2017

State of the art dual fluidized bed gasification of biomass in industrial scale

Kuba M, Kirnbauer F, Hofbauer H. State of the art dual fluidized bed gasification of biomass in industrial scale. 5th Central European Biomass Conference (oral presentation). January 2017, Graz, Austria.

Details


Conference contributions | 2012

State-of-the-art and assessment of filter technologies for residential biomass combustion systems

Obernberger I. State-of-the-art and assessment of filter technologies for residential biomass combustion systems, IEA Bioenergy Conference 2012, 13th-15th of November 2012, Vienna, Austria.

Details


Conference contributions | 2009

State-of-the-art and comparison of incineration and gasification of residues and waste

Wilk V, Hofbauer H. State-of-the-art and comparison of incineration and gasification of residues and waste. Junior Scientist Conference 2010, 7th-9th May 2010, Vienna, Austria.

Details

Thermal treatment of residues and waste is an important issue with increasing demand. In this work two pathways of thermal waste treatment, incineration and gasification, are compared. For this purpose literature on both technologies has been reviewed and the state-of-art technology for waste incineration and gasification is presented. The comparison highlights the strengths and weaknesses of both technologies and identifies future potentials.


Contributions at other events | 2009

State-of-the-art and comparison of incineration and gasification of residues and waste

Wilk, V. State-of-the-art and comparison of incineration and gasification of residues and waste, Doctoral Thesis, Vienna University of Technology, Vienna, Austria, 2009.

Details

More and more waste is generated every year, which has to be disposed. There is a legal obligation to treat waste before it can be landfilled in the European Union. Thus, thermal waste treatment is a very important issue.
In this work two pathways of thermal waste treatment, incineration and gasification, are compared. For this purpose, literature on both technologies has been reviewed and the stateof‐art technology for waste incineration and gasification is presented. The comparison highlights the strengths and weaknesses of both technologies and identifies future potentials. In Europe waste incineration is the state‐of‐the‐art technology ensuring destruction of the pollutants and allowing recovery of the energy content of the waste. A waste incineration plant consists of a furnace, where the waste is incinerated and the chemically bonded energy of the waste is discharged as heat. The hot flue gases pass the heat to the water in the heating surfaces of the steam generator. The energy of the waste can be used for the generation of hot water, steam of electrical power. Then the flue gas has to be cleaned in the air pollution control system. Dust is precipitated, HCl and HF is removed in an acid scrubber and SO2 in an alkaline scrubber. A catalytic reaction destroys dioxins and furans and reduces the emissions of NOx. Due to waste incineration the volume of the residues, which have to be landfilled, is
reduced by 90%. The second pathway of thermal waste treatment is waste gasification, where solid carbonaceous materials are converted into combustible gases by reaction with gasification agents. Due to gas production, not only the energy content of the waste can be recovered but the product range is extended. The producer gas can be converted into heat and power in a conventional steam boiler but also combusted in gas engines or turbines with higher efficiencies. In a combined cycle plant the hot exhaust gas of the turbine can be used in a heat recovery steam generator to increase the efficiency even more. After further cleaning the producer gas is also a suitable feedstock for synthesis of liquid fuels, synthetic natural gas and other chemicals.
Waste gasification processes have been developed in the past, but the plants have been shut down because of economic reasons and/or technical problems. However, important research has been done in the field of biomass gasification and thus gasification technology has been improved markedly. The fluidised bed gasifier in Güssing is one of the most successful examples; this technology is about to be commercialised. Considering these developments, there is definitely interesting potential for waste gasification now and the design of a new waste gasification process based on the findings in biomass gasification will be the scope of future research work.


Conference contributions | 2012

State‐of‐the‐art and assessment of filter technologies for residential biomass combustion systems

Mandl C, Obernberger I, Biedermann F. State‐of‐the‐art and assessment of filter technologies for residential biomass combustion systems, 20th European Biomass Conference 2012, 18th-22nd of June 2012, Milano, Italy. p 732-738.

Details

The objectives of the present study were to: (a) develop an appropriate estimation method for assessing the characteristic ash melting temperatures of different biomass fuels by means of thermodynamic equilibrium calculations (TEC) based on ash analysis data, (b) estimate the correlation between the results obtained from TEC and the experimentally received data for the melting temperatures using a TGA/DSC-method (thermogravimetric analysis/differential scanning calorimetry) and, (c) evaluate the applicability of the TEC and DSC methods as prediction tools for the melting behaviour of biomass ashes in relation to the conventional ash melting test according to DIN 51730. The results are presented for four selected biomass ash samples: straw, miscanthus, beech and bark (spruce). The agreement between the results obtained from TEC and experimental results (TGA/DSC and standard ash melting test) was reasonably good. For comparison between the experimental results and TEC regarding the deformation temperature it is recommended to utilize the temperature range between T15 and T30 estimated by TEC at 15 wt% and 30 wt% molten phase respectively. Differences between calculated melting temperatures T30 for straw (770°C) and bark (1,280°C) on the one side, and experimentally determined data on the other side are lower than 100°C. In the case of miscanthus and beech ash the prediction was with a deviation of around 200°C less precise. Flow temperatures measured as per standard test (DIN 51730) show generally a good agreement with the TEC fusion temperatures at 70 wt% of molten fraction (T70) for straw, miscanthus and bark ash. In case of beech ash is the TEC prediction of T70 (>1,600°C) moved to higher temperatures compared to experimental expected 1,380°C. The results of this study in combination with reliable databases and an appropriate calculation model, qualify the thermodynamic equilibrium calculations as a useful technique for a prediction of the ash melting behaviour including the assessment of characteristic melting temperatures.


Conference contributions | 2012

STATUS and FUTURE of bioSNG in EUROPE

Rauch R. STATUS and FUTURE of bioSNG in EUROPE, IEA Bioenergy Conference 2012, 13th-15th of November 2012, Vienna, Austria.

Details


Conference contributions | 2014

Status fortschrittlicher Biokraftstoffe

Bacovsky D. Status fortschrittlicher Biokraftstoffe, 7. EID Kraftstoff-Forum 2014, 18th-19th of March 2014, Hamburg, Germany

Details


Conference contributions | 2009

Status of BioSNG Production and FT Fuels from Biomass Steam Gasification

Rauch R. Status of BioSNG Production and FT Fuels from Biomass Steam Gasification, 4th BTLtec Biomass to Liquids 2009, 24th-25th of September, 2009 Graz, Austria.

Details


Conference contributions | 2009

Status of Development of Synthetic Biofuels from Biomass in Austria

Rauch R. Status of Development of Synthetic Biofuels from Biomass in Austria, Alternative Propulsion Systems and Energy Carriers 2009, 16th of October 2009, Vienna, Austria.

Details