Sortierung Titel Year

Publikationen


Peer Reviewed Scientific Journals | 2018

Reference Shaping for Model-Based Control of Biomass Grate Boilers.

Seeber R, Gölles M, Dourdoumas N, Horn M. Reference Shaping for Model-Based Control of Biomass Grate Boilers. Control Engineering Practice. 2019 Jan;82:173-184. https://doi.org/10.1016/j.conengprac.2018.10.006

External Link

Details

An established control strategy for biomass grate boilers based on a low-order nonlinear model is considered. Under ideal conditions, it achieves decoupled control of desired outputs by means of input–output linearization. The decoupling is gradually reduced and control performance deteriorates when actuator saturation occurs. This may be avoided by appropriately shaping the control strategy’s reference values. This contribution presents a method to do so by solving a sequence of linear programs. Its implementation requires the knowledge of typically unknown limits of mass-flows fed into the plant. An estimation strategy for these limits based on measurable quantities is thus proposed. Experimental data from three different scenarios is presented, in which the reference shaping improves tracking, mitigates wind-up phenomena and reduces emissions, respectively.


Scientific Journals | 2018

Tackling ammonia inhibition for efficient biogas production from chicken manure: Status and technical trends in Europe and China

Fuchs W, Wang X, Gabauer W, Ortner M, Li Z. Tackling ammonia inhibition for efficient biogas production from chicken manure: Status and technical trends in Europe and China (Review). Renewable and Sustainable Energy Reviews 2018;97:186-199.

External Link

Details

The increased global consumption of chicken products has resulted in the generation of huge amounts of manure. Numerous studies emphasized the large potential of this waste as an untapped source of renewable energy through anaerobic digestion (AD). However, intrinsic difficulties, in particular the high N content, induce instable process conditions, including the accumulation of intermediates, and foaming, which reduces methane yields. Such issues limit the widespread application of this energy-rich substrate for biogas production. The process inhibition by ammonia is usually prevented by reducing the concentration of chicken manure through dilution or by operating the plant considerably below its theoretical reactor capacity. However, this process compromises process efficiency, thereby increasing capital investments and operational costs. Another option to achieve optimal process performance is co-digestion with less N-rich materials. However, co-digestion also has its limitations due to the frequent unavailability of sufficient amounts of C-rich substrates. A series of promising technical solutions have been developed to overcome the aforementioned bottlenecks. Examples include stripping or membrane extraction as means to reduce ammonia concentration in the fermenter. Several full-scale plants employing ammonia removal techniques have been installed recently. Latest research also investigated the use of additives, such as zeolites and trace elements, as well as bioaugmentation, to mitigate ammonia inhibition. The current study reviews the state of technology as well as recent achievements and perspectives. It provides an overview of the different approaches to remove ammonia from AD-process and presents practical examples from China and Europe.


Technical Reports | 2018

The Green P - Nutzung von städtischen Verkehrsflächen für die Produktion von Biomasse

Lichtenegger K, Meixner K, Riepl R, Schipfer F, Zellinger M. The Green P - Nutzung von städtischen Verkehrsflächen für die Produktion von Biomasse. BMVIT, Schriftenreihe 25/2018.

External Link

Details


Conference contributions | 2018

The Green Parking Area – Utilization of urban parking areas for cultivation of algae

Zellinger M, Riepl R, Lichtenegger K, Meixner K, Drosg B, Enigl M, Theuretzbacher F, Schipfer F. The Green Parking Area – Utilization of urban parking areas for cultivation of algae. presentation at the WSED, Wels, Austria, 01. March 2018.

Details

The present study examines the possible use of urban and rural traffic areas for producing biomass. Many of those areas (for example, parking lots at cinemas and shopping centers) are only intensively used during certain times. Most of the time those areas remain empty.
At the same time a major problem for large-scale implementation of renewable energy is the massive land use resulting from limited energy density of solar radiation and, in case of biomass production, low efficiency for utilization of solar radiation by plants. Additionally, renewable energies are often criticized for the fact that they require areas, which could also be used for food and feed production.
Therefore, it is an attractive idea to use some of the traffic areas that are lost for the ecosystem anyway for biomass production. This approach is novel that no data have been available yet. The aim of this work was therefore to develop technical solutions, to quantify the technical potential for this type of biomass production and, subsequently, for energy supply, based on data on the area utilization, climatic data and known properties of microalgae.
The work deals with the question of the technical potential for this approach in Austria. This question is
answered by a survey of the area data in Austria, the elaboration of technical systems for a possible implementation, as well as by calculating the biomass potential, based on simulation results. The data have been collected, analyzed and evaluated in a comprehensive literature search. The potential analysis provides an overview of the distribution of traffic areas in Austria and the resulting biomass potential. Thus, a list of possible areas including biomass and energy quantities is available.


Conference Papers | 2019

Performance evaluation of an electrostatic precipitator in a small-scale biomass boiler by using different biomass feedstocks

Kelz J, Zemann C, Muschick D, Hofmeister G, Gölles M. & Retschitzegger S. Performance evaluation of an electrostatic precipitator in a small-scale biomass boiler by using different biomass feedstocks. Proceedings 27th European Biomass Conference and Exhibition, 27-31 May 2019, Lisbon, Portugal.1932-1938.

External Link

Details

In order to evaluate the performance of an electrostatic precipitator (ESP), comprehensive test runs investigating both particulate matter (PM) and gaseous emissions were performed by using softwood pellets as well as alternative biomass feedstocks such as short rotation coppice (poplar) and biomass residues (maize). An ESP was directly integrated in a commercially available small-scale biomass boiler. Based on wet chemical analyses of the fuels, so-called fuel indexes were calculated to deliver primary information on the expected combustion behaviour. The overall aim was to determine appropriate operating conditions, to optimise combustion parameters in order to minimise PM and gaseous emissions as well as to inhibit ash related problems. This was done by an efficient combination of primary (air staging in combination with an innovative control system) and secondary measures (integration of an ESP) and showed an enormous potential for both, a stable plant operation and reduced PM emissions. Thus the findings provide the basis for developing a fuel flexible, low emission and highly efficient biomass boiler in the sector of small-scale combustion systems.


Conference Papers | 2019

A Generalization of Ackermann’s Formula for the Design of Continuous and Discontinuous Observers

Niederwieser H, Koch S, Reichhartinger M. A Generalization of Ackermann’s Formula for the Design of Continuous and Discontinuous Observers. 58th IEEE Conference on Decision and Control. 2019.

External Link

Details

This paper proposes a novel design algorithm for nonlinear state observers for linear time-invariant systems. The approach is based on a well-known family of homogeneous differentiators and can be regarded as a generalization of Ackermann's formula. The method includes the classical Luenberger observer as well as continuous or discontinuous nonlinear observers, which enable finite time convergence. For strongly observable systems with bounded unknown perturbation at the input the approach also involves the design of a robust higher order sliding mode observer. An inequality condition for robustness in terms of the observer gains is presented. The properties of the proposed observer are also utilized in the reconstruction of the unknown perturbation and robust state-feedback control


Peer Reviewed Scientific Journals | 2019

A generally applicable, simple and adaptive forecasting method for the short-term heat load of consumers

Nigitz T, Gölles M. A generally applicable, simple and adaptive forecasting method for the short-term heat load of consumers. Applied Energy 2019;241:73-81.

External Link

Details

Energy management systems aiming for an efficient operation of hybrid energy systems with a high share of different renewable energy sources strongly benefit from short-term forecasts for the heat-load. The forecasting methods available in literature are typically tailor-made, complex and non-adaptive. This work condenses these methods to a generally applicable, simple and adaptive forecasting method for the short-term heat load. From a comprehensive literature review as well as the analysis of measurement data from seven different consumers, varying in size and type, the ambient temperature, the time of the day and the day of the week are deduced to be the most dominating factors influencing the heat load. According to these findings, the forecasting method bases on a linear regression model correlating the heat load with the ambient temperature for each hour of the day, additionally differentiating between working days and weekend days. These models are used to predict the future heat load by using forecasts for the ambient temperature from weather service providers. The model parameters are continuously updated by using historical data for the ambient temperature and the heat load, i.e. the forecasting method is adaptive. Additionally, the current prediction error is used to correct the prediction for the near future. Due to their simplicity, all necessary steps of the forecasting method, the update of the model parameters, the prediction based on linear regression models and the correction, can be implemented and computed with little effort. The final evaluation with measurement data from all seven consumers investigated leads to a Mean Absolute Range Normalized Error (MARNE) of 2.9% on average, and proves the general applicability of the forecasting method. In summary, the forecasting method developed is generally applicable, simple and adaptive, making it suitable for the use in energy management systems aiming for an efficient operation of hybrid energy systems.


Scientific Journals | 2019

A practical field trial to assess the potential of Sida hermaphrodita as a versatile, perennial bioenergy crop for Central Europe.

von Gehren P, Gansberger M, Pichler W, Weigl M, Feldmeier S, Wopienka E, Bochmann G. A practical field trial to assess the potential of Sida hermaphrodita as a versatile, perennial bioenergy crop for Central Europe. Biomass and Bioenergy 2019;122:99-108.

External Link

Details

Due to high biomass accumulation ability and multiple ecological benefits, the versatile, perennial bioenergy crop Sida hermaphrodita has sparked the interest of researchers in Central Europe. We assessed the crop's agronomy and bioenergy potential when grown under Austrian climate and soil conditions. A field trial was established in Austria, where the factors planting density and utilization strategy (thermal or biogas) were monitored for three growing seasons. Harvesting lignified biomass for thermal utilization at the end of the growing period resulted in higher dry matter yields than green biomass for biogas utilization which was harvested with a two-cut strategy. Due to lower costs but similar yield, a planting density of 1.77 plants m-2 is preferable over 2.66 plants m-2. The pelletizing process of the biomass was analyzed iteratively in 20 runs to optimize the energy efficiency and process stability while simultaneously increasing pellet durability. A simple drying step, disintegration with a pan grinder mill and pelletizing using a flat die pellet press resulted in stable, high quality pellets. Fuel characteristics of the biomass were favorable and all requirements to be categorized as solid biofuel were met, while combustion tests showed a good applicability of the produced pellets. When green biomass was used for biogas production, a significant drop in methane yield could be noted from the second growing season onward, indicating that older plants are less suitable for biogas production. Our results hint towards the potential of lignified S. hermaphrodita biomass to be used as a solid fuel for energy production.


Books / Bookchapters | 2019

Adaptive Methods for Energy Forecasting of Production and Demand of Solar-Assisted Heating Systems

Unterberger V, Nigitz T, Luzzu M, Muschick D, Gölles M. Adaptive Methods for Energy Forecasting of Production and Demand of Solar-Assisted Heating Systems. In: Valenzuela O, Rojas F, Pomares H, Rojas I. (eds) Theory and Applications of Time Series Analysis. ITISE 2018. Contributions to Statistics. Springer, Cham. 2019.

External Link

Details

Solar-assisted heating systems use the energy of the sun to supply consumers with renewable heat and can be found all over the world where heating of buildings is necessary. For these systems, both heat production and heat demand are directly related to the weather conditions. In order to optimally plan production, storage, and consumption, forecasts for both the future heat production of the thermal solar collectors as well as the future heat demand of the connected consumers are essential. For this reason, this contribution presents adaptive forecast methods for the solar heat production and the heat demand of consumers using weather forecasts. The developed methods are easy to implement and therefore practically applicable. The final verification of the methods shows good agreement between the predicted values and measurement data from a representative solar-assisted heating system.


Scientific Journals | 2019

Ammonia as Promising Fuel for Solid Oxide Fuel Cells: Experimental Analysis and Performance Evaluation

Stöckl B, Preininger M, Subotic V, Schröttner H, Sommersacher P, Seidl M, Megel S, Hochenauer C. Ammonia as Promising Fuel for Solid Oxide Fuel Cells: Experimental Analysis and Performance Evaluation. ECS Transactions; The Electrochemical Society 2019.91:1601-1610

External Link

Details

n the course of this study the direct utilization of ammonia in different types of solid oxide fuel cells (SOFCs), such as anode- and electrolyte-supported SOFC, is investigated. Experiments in low fuel utilization, exhibited excellent performance of ammonia in SOFCs, although the power outputs of equivalent hydrogen/nitrogen fuels were not attained due to the incomplete endothermic ammonia decomposition. Next, the single cells were operated under high fuel utilization conditions and methane was added to the humidified ammonia stream, where they showed excellent ammonia- and methane conversions. The stability of the cells used was proven over a period of at least 48 hours with a variety of fuel mixtures. Post mortem scanning electron microscopy analysis of the anode micro-structures indicated nitriding effects of nickel, as microscopic pores and enlargements of the metallic parts occurred. Finally, a long-term test over 1,000 hours was carried out using a ten-layer stack consisting of electrolyte-supported cells.


Peer Reviewed Scientific Journals | 2019

Applicability of Fuel Indexes for Small-Scale Biomass Combustion echnologies, Part 2: TSP and NOx Emissions

Feldmeier S, Wopienka E, Schwarz M, Schön C, Pfeifer C. Applicability of Fuel Indexes for Small-Scale Biomass Combustion echnologies, Part 2: TSP and NOx Emissions. Energy & Fuels. 2019.33:11724-11730.

External Link

Details

Several studies pointed out that emission release is related to the concentration of particular elements in the fuel. Fuel indexes were developed to predict emissions of biomass combustion based on the elemental composition of the fuel. This study focuses on emissions of different biomass combustion technologies for domestic heating. Based on combustion tests with a wide range of fuel qualities we validated fuel indexes from the literature. We calculated the values for predicting total suspended particulate (TSP) matter and nitrogen oxide (NOx) emission of 39 biomass-derived fuels. Combustion tests conducted in 10 different small-scale appliances provided experimental data. The combustion technologies had a nominal load between 6 and 140 kWth. We measured TSP and NOx emissions during the stable phases of the experiments. The evaluation considered 529 combustion test intervals. All tested indexes for predicting the TSP corresponded well to the measured values. The correlation analysis confirmed that these indexes are associated with each other and are basically dominated by the concentration of potassium. The results regarding NOx emissions confirm previous findings from the literature by showing the typical nonlinear relation between nitrogen content of the fuel and NOx in the flue gas. Overall the comparison of the fuel indexes with the practical data indicated also an influence of the combustion technologies.


Peer Reviewed Scientific Journals | 2019

Applicability of the SOFC technology for coupling with biomass-gasifier systems: Short- and long-term experimental study on SOFC performance and degradation behaviour

Subotić V, Baldinelli A, Barelli L, Scharler R, Pongratz G, Hochenauer C, Anca-Couce A. Applicability of the SOFC technology for coupling with biomass-gasifier systems: Short- and long-term experimental study on SOFC performance and degradation behaviour. Applied Energy. 2019.256:113904

External Link

Details

Coupling biomass gasification with high temperature Solid Oxide Fuel Cells (SOFCs) is a promising solution to increase the share of renewables and reduce emissions. The quality of the producer gas used can, however, significantly impact the SOFC durability and reliability. The great challenge is to ensure undisturbed operation of such system and to find a trade-off between optimal SOFC operating temperature and system thermal integration, which may limit the overall efficiency. Thus, this study focuses on experimental investigation of commercial SOFC single cells of industrial size fueled with different representative producer gas compositions of industrial relevance at two relevant operating temperatures. The extensive experimental and numerical analyses performed showed that feeding SOFC with a producer gas from a downdraft gasifier, with hot gas cleaning, at an operating temperature of 750 °C represents the most favorable setting, considering system integration and the highest fuel utilization. Additionally, a 120 h long-term test was carried out, showing that a long-term operation is possible under stated operating conditions. Local degradation took place, which can be detected at an early stage using appropriate online-monitoring tools.


Peer Reviewed Scientific Journals | 2019

Assessment of the Behaviour of a Commercial Gasification Plant During Load Modulation and Feedstock Moisture Variation

Antolini D, Hollenstein C, Martini S, Patuzzi F, Zemann C, Felsberger W et al. Assessment of the Behaviour of a Commercial Gasification Plant During Load Modulation and Feedstock Moisture Variation. Waste and Biomass Valorization. 2019 Jun 11. https://doi.org/10.1007/s12649-019-00714-w

External Link

Details

Fixed-bed biomass gasification coupled with internal combustion engines allows an efficient exploitation of biomass for the combined production of heat and power (CHP) at small scale with increased economic viability with respect to combustion-based CHP systems. The main barrier on the way towards a wider market distribution is represented by the fact that a robust practical operation of state-of-the-art fixed-bed biomass gasification systems is limited to very specific fuel properties and steady-state operation. The aim of this work is twofold. On the one hand, it presents the results of a series of test runs performed in a monitored commercial plant under different process conditions, in order to assess its behaviour during load modulation and fuel property variations. On the other hand, an in-house developed thermodynamic equilibrium model was applied to predict the behaviour of the gasification reactor. This gasification model could be used for the development of a model-based control strategy in order to increase the performance of the small-scale gasification system. To assess the general operational behaviour of the whole gasification system an experimental one-week-long test run has been performed by BIOENERGY 2020+ and the Free University of Bozen-Bolzano as round robin test. The plant has been tested under different operating conditions, in particular, varying the load of the engine and the moisture content of the feedstock. The outcomes shown in the present work provide a unique indication about the behaviour of a small-scale fix-bed gasifier working in conditions different from the nominal ones.


Other Presentations | 2019

ÖKO-OPT-QUART - Workshop

Ökonomisch optimiertes Regelungs- und Betriebsverhalten komplexer Energieverbünde zukünftiger Stadtquartiere

Moser A, Muschick D, Gölles M, Mach T, Schranzhofer H, Nageler P, Lerch W, Leusbrock I, Tugores C. ÖKO-OPT-QUART: Ökonomisch optimiertes Regelungs- und Betriebsverhalten komplexer Energieverbünde zukünftiger Stadtquartiere. Workshop im Rahmen des FFG-Projekts ÖKO-OPT-QUART (3. Ausschreibung "Stadt der Zukunft") am 25.01.2019.

Download PDF

Details

Workshop of the research project ÖKO-OPT-QUART (Ökonomisch optimiertes Regelungs- und Betriebsverhalten komplexer Energieverbünde zukünftiger Stadtquartiere)


Technical Reports | 2019

ÖKO-OPT-QUART Ökonomisch optimiertes Regelungs- und Betriebsverhalten komplexer Energieverbünde zukünftiger Stadtquartiere

Endbericht (Entwurf)

Moser A, Muschick D, Gölles M, Mach T, Schranzhofer H, Leusbrock I, Ribas Tugores C. ÖKO-OPT-QUART Ökonomisch optimiertes Regelungs- und Betriebsverhalten komplexer Energieverbünde zukünftiger Stadtquartiere. Berichte aus Energie- und Umweltforschung. 2019.

Download PDF

Details


Other publication | 2019

ÖKO-OPT-QUART Leitfaden

Richtlinien, Methoden und Hinweise zur Vorgehensweise bei der Planung und Implementierung von modellprädiktiven Regelungen für komplexe vernetzte Energiesystemen in zukünftigen Stadtquartieren

Moser A, Muschick D, Gölles M. ÖKO-OPT-QUART Leitfaden. Richtlinien, Methoden und Hinweise zur Vorgehensweise bei der Planung und Implementierung von modellprädiktiven Regelungen für komplexe vernetzte Energiesystemen in zukünftigen Stadtquartieren.

Download PDF

Details


Other Presentations | 2019

Betrieb bei maximaler Effizienz und minimalen Emissionen durch CO-Lambda-Optimierung

Zemann C, Hammer F. Betrieb bei maximaler Effizienz und minimalen Emissionen durch CO-Lambda-Optimierung. Heizwerke-Betreibertag 2019, Sieggraben, 07. Oktober 2019 (oral presentation).

Download PDF

Details


Studien | 2019

Bioenergy in Austria

Bacovsky D, Matschegg D. Bioenergy in Austria. Federal Ministry for Transport, Innovation and Technology. 2019:52.

Federal Ministry for Transport, Innovation and Technology

External Link

Details


Scientific Journals | 2019

Characterization and performance evaluation of ammonia as fuel for solid oxide fuel cells with Ni/YSZ anodes

Stoeckl B, Subotić V, Preininger M, Schwaiger M, Evic N, Schroettner H, Hochenauer C. Characterization and performance evaluation of ammonia as fuel for solid oxide fuel cells with Ni/YSZ anodes. Electrochimica Acta 2019;298:874-883.

External Link

Details

Ammonia appears to be a promising fuel for solid oxide fuel cell systems: it is a carbon-free species, can be stored easily and offers an excellent energy density with a high hydrogen content. This work shows comprehensive investigations of the direct operation of ammonia on an industrial-sized solid oxide fuel cell with Ni/YSZ anode. In the course of this study, ammonia exhibited excellent performance as a fuel for solid oxide fuel cells, although test results equivalent to those of hydrogen/nitrogen fuel mixtures were not attained. Electrochemical impedance spectroscopy proved the reduced performance output of ammonia as fuel to result from its endothermic decomposition. This significantly increased the ohmic resistance, which is mainly influenced by the ammonia flow rate. Operation in counter-flow is more favorable than in co-flow, as lower ohmic and diffusion resistances were measured. Twenty-four-hour stability tests showed stable behavior at 800 °C and a voltage decrease of 2% at 700 °C. Investigations of the anode micro-structure suggest that nickel nitriding occurred, as microscopic pores, particle enlargements, and agglomerations were identified at the metallic parts.


Reviewed Conference Papers | 2019

Co-Simulation of an Energy Management System for Future City District Energy Systems

Moser AGC, Muschick D, Gölles M, Lerch W, Schranzhofer H, Nageler PJ et al. Co-Simulation of an Energy Management System for Future City District Energy Systems. In Proceedings of the International Conference on Innovative Applied Energy. 2019.

External Link

Details

The continuous increase of (volatile) renewable energy production and the development of energy-efficient buildings have led to a transformation of city districts’ energy systems. Their complexity has increased significantly due to the coupling of the different energy sectors like heating, cooling and electricity. Such complex multi-energy systems can be operated more efficiently and reliably if knowledge of their specific components (in terms of mathematical models) as well as knowledge of weather forecasts is incorporated in a high-level controller, which is typically referred to as an Energy Management System (EMS). However, still little comprehensive information on the costs and the practical advantages of such systems is available. For this reason, a simulation environment to estimate the real costs and advantages of the use of such an EMS is required. Consequently, this work focuses on the development of an EMS for future city districts’ energy systems and the development of a co-simulation environment in order to demonstrate the benefits of the use of the developed EMS in comparison to a conventional control strategy. The co-simulation is implemented with the aid of the co-simulation platform Building Controls Virtual Test Bed (BCVTB) and consists of the following parts: a non-linear, thermoelectric model and a control block containing either the conventional control strategy or the EMS. The thermoelectric model is built up using the well-established simulation tools TRNSYS and IDA-ICE, simulating the energy hub of the city district and the districts’ buildings, respectively. The control block is simulated using MATLAB, where IBM ILOG CPLEX is used for solving the resulting mixed-integer linear program (MILP) of the EMS. Finally, an economic model for financial (and ecological) assessment of the operation is simulated with the aid of the software package Dymola. To put the developed EMS and the co-simulation into practise a case study based on a new city district in Graz, Austria, which is currently in the planning stage, is carried out. The integration of the responsible planners and investors in the modelling process guarantees the models’ practical applicability. In the case study the performance of the originally planned conventional control strategy is compared with the performance of the developed EMS using annual simulations with a simulation time step of 1 minute, and a 24 hour prediction horizon and a 15 minute time step for the EMS. For a more robust and realistic comparison both control strategies are simulated for different scenarios considering current and future (2060) climate conditions, medium and high energy demands (load), ideal and real load prediction methods and varying import prices for electricity from the electricity grid. The results show that the use of the developed EMS strategy results in reduced annual total costs (considering operational and investment costs of additionally suggested distributed energy resources) in comparison to the conventional control strategy. Furthermore, the annual CO2-emissions could be reduced by increasing the self-consumption of the installed (renewable) energy resources and thus decreasing the necessary energy imports from the electricity and the heating grid.


Conference contributions | 2019

Co-Simulation of an Energy Management System for Future City District Energy Systems (Presentation)

Moser AGC, Muschick D, Gölles M, Lerch W, Schranzhofer H, Nageler PJ et al. Co-Simulation of an Energy Management System for Future City District Energy Systems. International Conference on Innovative Applied Energy. 2019. (Oral presentation, 15.03.2019.)

External Link

Details

Slides of the talk "Co-Simulation of an Energy Management System for Future City District Energy Systems"


Scientific Journals | 2019

Cultivation of the microalga Eustigmatos magnus in different photobioreactor geometries and subsequent anaerobic digestion of pre-treated biomass

Gruber-Brunhumer MR, Schöberl A, Zohar E, Koenigsberger S, Bochmann G, Uher B, Lang I, Schagerl M, Fuchs W, Drosg B. Cultivation of the microalga Eustigmatos magnus in different photobioreactor geometries and subsequent anaerobic digestion of pre-treated biomass. Biomass and Bioenergy 2019.105303.

External Link

Details

Microalgal biomass as a feedstock for biogas production is linked to the parameters biomass productivity and biogas yield. Besides an easy-to-use strain for anaerobic digestion, the photobioreactor (PBR) design is important. A microalgae strain selection revealed Eustigmatos magnus (SAG 36.89) as the most promising strain yielding an average of 100 mg total suspended solids (TSS) L−1 day−1. The strain was tested in cost-effective sleevebag-PBR-systems of 10 cm, 20 cm and 30 cm diameter facing the light from the front or laterally. Highest mean productivity on a volumetric basis was measured in PBRs with the lowest diameter (104 and 117 mg L−1 day−1. The highest productivity per m−2 was achieved in 10 cm PBRs with front light configuration (9.35 g TSS m−2 day−1). The lateral light configuration of 10 cm PBRs had positive aspects such as the lowest mean water demand to produce 1 kg TSS (481 L−1 kg−1) and the lowest mean energy demand for medium separation of 1 kg TSS (106 Wh). The concentrated microalgal biomass was then subjected to ultrasonication and thermal pre-treatment (90 °C and 120 °C) and tested in BMP tests. Mesophilic anaerobic mono-digestion of untreated microalgae biomass led to a methane (CH4) yield of 343 L−1 kg−1 volatile solids (VS). Thermal pre-treatment at 120 °C resulted in significantly increased CH4 yields of 430 L−1 kg−1 VS. As thermal pre-treatment can be easily installed nearby a biogas plant it could be an interesting option for AD of microalgal biomass with only little investment.


Peer Reviewed Scientific Journals | 2019

Double-cropping systems based on rye, maize and sorghum: Impact of variety and harvesting time on biomass and biogas yield

Wannasek L, Ortner M, Kaul HP, Amon B, Amon T. Double-cropping systems based on rye, maize and sorghum: Impact of variety and harvesting time on biomass and biogas yield. European Journal of Agronomy 2019.110:125934

External Link

Details

Climate change affects the frequency and intensity of extreme weather, the results of which include production losses and climate-induced crop productivity fluctuations.

Double-cropping systems (DCSs) have been suggested as a way to increase biomass-production while simultaneously delivering environmental benefits. In a three-year field-test, two DCSs based on maize and sorghum as the main crop and rye as the preceding winter crop were compared with each other and compared with 2 single-cropping systems (SCSs) of maize or sorghum; there were comparisons of growth dynamics, optimal harvesting and growing time as well as biomass and methane yield. In addition, the impact of variety and harvest time on the winter rye optimal biomass yield was studied.

The experiments clearly showed the superiority of the DCS over the SCS. Within the DCS, the rye/sorghum combination achieved significantly higher biomass yields compared to those of the rye/maize combination. The highest dry matter biomass yield was achieved during year 1 at 27.5 ± 2.4 t∙ha−1, during which winter rye contributed 8.3 ± 0.7 t∙ha−1 and sorghum contributed 19.2 ± 1.8 t∙ha−1. At the experimental location, which is influenced by a Pannonia climate (hot and dry), the rye/sorghum DCS was able to obtain average methane yields per hectare, 9300 m3, whereas the rye/maize combination reached 7400 m3. In contrast, the rye, maize and sorghum SCSs achieved methane yields of 4800, 6100 and 6500 m3 ha−1, respectively. The study revealed that the winter rye and sorghum DCS is a promising strategy to counteract climate change and thus guarantee crop yield stability.


Peer Reviewed Scientific Journals | 2019

Effects of partial maize silage substitution with microalgae on viscosity and biogas yields in continuous AD trials

Gruber-Brunhumer MR, Montgomery LFR, Nussbaumer M, Schoepp T, Zohar E, Muccio M, Ludwig I, Bochmann G, Fuchs W, Drosg B. Effects of partial maize silage substitution with microalgae on viscosity and biogas yields in continuous AD trials. Journal of Biotechnology 2019;295:80-89.

External Link

Details

The microalga Acutodesmus obliquus was investigated as a feedstock in semi-continuously fed anaerobic digestion trials, where A. obliquus was co-digested with pig slurry and maize silage. Maize silage was substituted by both 10% and 20% untreated, and 20% ultrasonicated microalgae biomass on a VS (volatile solids) basis. The substitution of maize silage with 20% of either ultrasonicated and untreated microalgae led to significantly lower biogas yields, i.e., 560 dm³ kg−1 VScorr in the reference compared to 516 and 509 dm³ kg-1VScorr for untreated and ultrasonicated microalgae substitution. Further, the viscosities in the different reactors were measured at an OLR of 3.5 g VS dm-3 d-1. However, all treatments with microalgae resulted in significantly lower viscosities. While the mean viscosity reached 0.503 Pa s in the reference reactor, mean viscosities were 53% lower in reactors where maize was substituted by 20% microalgae, i.e. 0.239 Pa s, at a constant rotation speed of 30 rpm. Reactors where maize was substituted by 20% ultrasonicated microalgae had a 32% lower viscosity, for 10% microalgae substitution a decrease of 8% was measured. Decreased viscosities have beneficial effect on the bioprocess and the economy in biogas plants. Nonetheless, with regard to other parameters, no positive effect on biogas yields by partial substitution with microalgae biomass was found. The application of microalgae may be an interesting option in anaerobic digestion when fibrous or lignocellulosic substances lead to high viscosities of the digested slurries. High production costs remain the bottleneck for making microalgae an interesting feedstock.


Scientific Journals | 2019

Efficient Multi-Year Economic Energy Planning in Microgrids

Pecenak Z, Stadler M, Fahy K, Efficient Multi-Year Economic Energy Planning in Microgrids. Applied Energy 2019;225.

External Link

Details

With energy systems, the problem of economic planning is decisive in the design of a low carbon and resilient future grid. Although several tools to solve the problem already exist in literature and industry, most tools only consider a single “typical year” while providing investment decisions that last around a quarter of a century. In this paper, we introduce why such an approach is limited and derive two approaches to correct this. The first approach, the Forward-Looking model, assumes perfect knowledge and makes investment decisions based on the full planning horizon. The second novel approach, the Adaptive method, solves the optimization problem in single year iterations, making incremental investment decisions that are dependant on previous years, with only knowledge of the current year. Comparing the two approaches on a realistic microgrid, we find little difference in investment decisions (maximum 21% difference in total cost over 20 years), but large differences in optimization time (up to 12000% time difference). We close the paper by discussing implications of forecasting errors on the microgrid planning process, concluding that the Adaptive approach is a suitable choice.