Filter

Sortierung Titel Year

Publikationen


Contributions to trade journals | 2013

Pseudo heterogeneous modeling of catalytic methane steam reforming process in a fixed bed reactor

Sadooghi P, Rauch R. Pseudo heterogeneous modeling of catalytic methane steam reforming process in a fixed bed reactor. Journal of Natural Gas Science and Engineering. 2013;11:46-51.

External Link

Details

A mathematical model is developed to simulate synthesis gas production by methane steam reforming process in a fixed bed reactor filled with catalyst particles. Due to the endothermic nature of the reforming reactions heat is supplied into the reactor by means of electrical heating, therefore, the reactor and catalyst particles are exposed to significant axial and radial temperature gradients. A pseudo heterogeneous model is used in order to exactly represent diffusion phenomena inside the reactor tube. Heat and mass transfer equations are coupled with detailed reaction mechanisms and solved for both the flow phase and within the catalyst pellets. The reaction has been investigated from a modeling view point considering the effect of different temperatures ranging from 873 to 1073 (K) on methane conversion and hydrogen yields. The result provides temperature and concentration distribution along the reactor axial and radial coordinates and strong radial temperature gradients particularly close to the entrance of the reactor have been found. © 2013 Elsevier B.V.


Contributions to trade journals | 2013

Pulmonary inflammation and tissue damage in the mouse lung after exposure to PM samples from biomass heating appliances of old and modern technologies

Happo MS, Uski O, Jalava PI, Kelz J, Brunner T, Hakulinen P, et al. Pulmonary inflammation and tissue damage in the mouse lung after exposure to PM samples from biomass heating appliances of old and modern technologies. Sci Total Environ. 2013;443:256-66.

External Link

Details

Current levels of ambient air fine particulate matter (PM2.5) are associated with mortality and morbidity in urban populations worldwide. In residential areas wood combustion is one of the main sources of PM2.5 emissions, especially during wintertime. However, the adverse health effects of particulate emissions from the modern heating appliances and fuels are poorly known. In this study, health related toxicological properties of PM1 emissions from five modern and two old technology appliances were examined. The PM1 samples were collected by using a Dekati® Gravimetric Impactor (DGI). The collected samples were weighed and extracted with methanol for chemical and toxicological analyses. Healthy C57BL/6J mice were intratracheally exposed to a single dose of 1, 3, 10 or 15mg/kg of the particulate samples for 4, 18 or 24h. Thereafter, the lungs were lavaged and bronchoalveolar lavage fluid (BALF) was assayed for indicators of inflammation, cytotoxicity and genotoxicity. Lungs of 24h exposed mice were collected for inspection of pulmonary tissue damage. There were substantial differences in the combustion qualities of old and modern technology appliances. Modern technology appliances had the lowest PM1 (mg/MJ) emissions, but they induced the highest inflammatory, cytotoxic and genotoxic activities. In contrast, old technology appliances had clearly the highest PM1 (mg/MJ) emissions, but their effect in the mouse lungs were the lowest. Increased inflammatory activity was associated with ash related components of the emissions, whereas high PAH concentrations were correlating with the smallest detected responses, possibly due to their immunosuppressive effect. © 2012 Elsevier B.V.


Other Presentations | 2013

Pylogenetic (SSU) and Fatty Acid Analysis of Several Algal Strains within the Trebouxiophyceae and Implications for Commercial Purposes

Gruber M, Darienko T, Pröschold T, Jirsa F, Schagerl M. Pylogenetic (SSU) and Fatty Acid Analysis of Several Algal Strains within the Trebouxiophyceae and Implications for Commercial Purposes, 21st European Biomass Conference and Exhibition 2013, 3rd-7th of June 2013, Copenhagen, Denmark.

Details


Peer Reviewed Scientific Journals | 2017

Pyrolysis of pellets made with biomass and glycerol: Kinetic analysis and evolved gas analysis

Bartocci P, Anca-Couce A, Slopiecka K, Nefkens S, Evic N, Retschitzegger S, Barbanera M, Buratti C, Cotana F, Bidini G, Fantozzi F. Pyrolysis of pellets made with biomass and glycerol: Kinetic analysis and evolved gas analysis. Biomass and Bioenergy. February 2017;97: 11-19.

External Link

Details

Glycerol is a co-product compound of biodiesel production with an interesting heating value. In this work pyrolysis kinetic parameters for a pellet made with a mass fraction of 90% sawdust and a mass fraction of 10% glycerol are derived through thermogravimetric analysis. A new parallel reaction scheme with four components (cellulose, hemicellulose, lignin and glycerol) is adopted and the kinetic triplet for each component is derived using a model fitting approach applied to this particular kind of pellet. The isoconversional method Kissinger-Akahira-Sunose is employed both to provide initial values for model fitting simulations and to check final results. Results show that activation energies and pre-exponential factors are respectively: 149.7 kJ mol1 and 1.98*1011 s−1 for hemicellulose, 230.1 kJ mol1 and 1.84*1017 s−1 for cellulose, 154.3 kJ mol1 and 5.14*109 s−1 for lignin, 74.5 kJ mol1 and 2.17*105 s−1 for glycerol with a first reaction order for all components, except for lignin (n = 2.6). Through evolved gas analysis it was demonstrated that the thermal degradation of glycerol contained in the pellet can increase hydrogen content in pyrolysis gases.


Conference Papers | 2017

Pyrolysis of sewage sludge to produce fuels and chemical feedstock

Wartha C, Kranner R, Meirhofer M. Pyrolysis of sewage sludge to produce fuels and chemical feedstock. 5th Central European Biomass Conference (Poster). January 2017, Graz, Austria.

Details


Conference contributions | 2009

Quality Check for European Wood Pellets

Wopienka E, Griesmayr S, Friedl G, Haslinger W. Quality Check for European Wood Pellets, 17th European Biomass Conference 2009, 29th of June-3rd of July 2009, Hamburg, Germany. p 1821-1823.

Details

In the presented work the fuel quality and basic data about production processes of wood pellets from
all over Europe are investigated. For this purpose pellets producers were interviewed and fuel samples were analysed. Information from 91 companies was evaluated, covering about 50% of the European pellets production capacity, and pellets samples of 51 companies from 18 different countries were examined. It was found, that the raw material for pellets production is mainly taken from local resources. 75% of the plants process soft wood, whereas the use of hard wood is more common in Eastern Europe, Italy, Spain and France. Regarding the fuel properties of the pellets, differences were mainly found with regard to ash content and mechanical durability. In spite of these strong variations, almost all samples fulfilled the requirements according to the respective quality standard declared, and a clear correlation of valid standards and available pellets qualities was observed.


Contributions to trade journals | 2014

Quantitation of aging products formed in biodiesel during the Rancimat accelerated oxidation test

Flitsch S, Neu PM, Schober S, Kienzl N, Ullmann J, Mittelbach M. Quantitation of aging products formed in biodiesel during the Rancimat accelerated oxidation test. Energy and Fuels. 2014;28(9):5849-56.

External Link

Details

Biodiesel (rapeseed oil methyl ester) was aged in a Rancimat device at a temperature of 110°C and an air flow of 10 L/h. Time-resolved analyses applying gas chromatography-flame ionization detection, gas chromatography-mass spectrometry, and ion-exchange chromatography on the formation of aging products were performed. Formic and acetic acid, fatty acids with chain lengths from 5 to 18 carbon atoms, fatty acid methyl esters, and epoxides were quantified. After 12 h of aging, the concentrations of formic and acetic acid were 5600 ± 80 and 1360 ± 80 mg/kg, respectively. Fatty acid concentrations were in the range of <18-4200 mg/kg after 18 h of aging. Linoleic acid methyl ester and linolenic acid methyl ester (19 and 9.1 mass % of the non-aged fuel) were shown to be fully decomposed after 24 and 18 h of aging, respectively. After 51 h of aging, the concentration of oleic acid methyl ester (63 mass % of the non-aged fuel) decreased to 2.2 mass % and trans-epoxy stearic acid methyl ester and cis-epoxy stearic acid methyl ester reached concetrations of 5.9 and 0.7 mass %, respectively. The fuel composition shows only minor changes in early stages of aging, and a strong timely correlation of the formation of aging products with the end of the induction period of fuel was observed. © 2014 American Chemical Society.


Conference contributions | 2009

Reached Developments of Biomass Combustion Technologies and Future Outlook (plenary lecture)

Obernberger I. Reached Developments of Biomass Combustion Technologies and Future Outlook (plenary lecture), 17th European Biomass Conference 2009, 29th of June-3rd of July 2009, Hamburg, Germany. p 20-37.

Details


Peer Reviewed Scientific Journals | 2016

Reaction mechanisms and multi-scale modelling of lignocellulosic biomass pyrolysis

Anca-Couce, A. Reaction mechanisms and multi-scale modelling of lignocellulosic biomass pyrolysis. Progress in Energy and Combustion Science. Volume 53, March 2016, Pages 41–79.

External Link

Details

In this work about pyrolysis of lignocellulosic biomass, the individual reaction mechanisms of cellulose, hemicellulose and lignin are initially described. The recent advances in the understanding of the fundamental reaction pathways are described, including quantum-mechanical calculations, and the description of pyrolysis as a two-step process, i.e., primary pyrolysis and secondary charring, the effect of the presence of an intermediate liquid compound, and the influence of inorganic species are discussed.

The need to describe biomass pyrolysis as the sum of the contributions of its individual components is then emphasised. The process of determining biomass mass loss kinetics is analysed, and the product composition and heat of reaction that are experimentally obtained during pyrolysis are presented, along with detailed schemes that can be used to predict them.

Finally, it is demonstrated that a multi-scale consideration of pyrolysis on multiple levels – specifically, on molecular, particle and reaction levels – is required to accurately describe biomass pyrolysis. Intra-particle phenomena and particle models are discussed and the reactor level is analysed with a focus placed on fixed bed and fluidised bed pyrolysis. In summary, a list of 10 research focal points that will be important in the future is presented.


Scientific Journals | 2019

Real-life emission factor assessment for biomass heating appliances at a field measurement campaign in Styria, Austria

Sturmlechner R, Schmidl C, Carlon E, Reichert G, Stressler H, Klauser F, Kelz J, Schwabl M, Kirchsteiger B, Kasper-Giebl A, Höftberger E, Haslinger W. Real-life emission factor assessment for biomass heating appliances at a field measurement campaign in Styria, Austria. WIT Transactions on Ecology and the Environment 2019.

External Link

Details

Biomass combustion is a major contributor to ambient air pollution. Thus, knowing the real-life emissions of biomass heating systems is crucial. Within the project Clean Air by biomass a field measurement campaign was conducted. 15 biomass heating appliances were tested in households at the end user according to their usual operation. Emission factors for gaseous and particulate emissions, as well as for the genotoxic and carcinogenic substance benzo(a)pyrene, were evaluated and compared to current proposed European and Austrian emission factors used for emission inventories. Moreover, the shares of particles and benzo(a)pyrene in hot and cooled flue gas were determined. Results showed a high variability of emissions in the field. Highest values and ranges occurred for room heaters (TSPtotal: 226 mg/MJ). Biomass boilers showed clearly lower emission factors (TSPtotal: 184 mg/MJ) in the field than room heaters and also than the proposed European and Austrian emission factors, in many cases. Emission factors for tiled stoves showed a similar trend (TSPtotal: 67 mg/MJ). The share of condensable particles in the flue gas was remarkable. Especially benzo(a)pyrene was found mostly in the condensable fraction of the particles.


Contributions at other events | 2009

Realisierung einer mit Biomasse befeuerten Mikro-Kraft-Wärme-Kopplung mit thermoelektrischem Generator

Moser, W. Realisierung einer mit Biomasse befeuerten Mikro-Kraft-Wärme-Kopplung mit thermoelektrischem Generator, Doctoral Thesis, Technische Universität Wien, Vienna, Austria, 2009.

Details


Conference contributions | 2009

Reality Check for Agricultural Biofuels

Wopienka E, Friedl G, Haslinger W. Reality Check for Agricultural Biofuels, World Sustainable Energy Days 2009, 25th-27th of February 2009, Wels, Austria.

Details


Conference contributions | 2012

Recent Gas sampling and analysis methods for the determination of condensable gas components in fuel gases and synthesis gases from pyrolysis and gasification

Neubauer Y, Kleinhappl M. Recent Gas sampling and analysis methods for the determination of condensable gas components in fuel gases and synthesis gases from pyrolysis and gasification, 20th European Biomass Conference 2012, 18th-22nd of June 2012, Milano, Italy. p 1095-1096.

Details

A workshop on sampling and analysis of gas impurities (mainly condensables (tar)) in gases from thermochemical conversion processes was held in Berlin at the 19th EU BC+E. Here the outcomes are shortly summarized and the activities in the after course of the workshop are briefly discussed. An international working group formed to further discuss the important topics of analytics in these gas families was formed. Further ongoing and planned activities will be mentioned.


Peer Reviewed Scientific Journals | 2014

Reducing the risk of foaming and decreasing viscosity by two-stage anaerobic digestion of sugar beet pressed pulp

Stoyanova E, Forsthuber B, Pohn S, Schwarz C, Fuchs W, Bochmann G. Reducing the risk of foaming and decreasing viscosity by two-stage anaerobic digestion of sugar beet pressed pulp. Biodegradation. 2014;25(2):277-89.

External Link

Details

Anaerobic digestion (AD) of sugar beet pressed pulp (SBPP) is a promising treatment concept. It produces biogas as a renewable energy source making sugar production more energy efficient and it turns SBPP from a residue into a valuable resource. In this study one- and two-stage mono fermentation at mesophilic conditions in a continuous stirred tank reactor were compared. Also the optimal incubation temperature for the pre-acidification stage was studied. The fastest pre-acidification, with a hydraulic retention time (HRT) of 4 days, occurred at a temperature of 55 °C. In the methanogenic reactor of the two-stage system stable fermentation at loading rate of 7 kg VS/m3 d was demonstrated. No artificial pH adjustment was necessary to maintain optimum levels in both the pre-acidification and the methanogenic reactor. The total HRT of the two-stage AD was 36 days which is considerably lower compared to the one-stage AD (50 days). The frequently observed problem of foaming at high loading rates was less severe in the two-stage reactor. Moreover the viscosity of digestate in the methanogenic stage of the two-stage fermentation was in average tenfold lower than in the one-stage fermentation. This decreases the energy input for the reactor stirring about 80 %. The observed advantages make the two-stage process economically attractive, despite higher investments for a two reactor system. © 2013 Springer Science+Business Media Dordrecht.
 


Conference contributions | 2012

Reflexions on the existing guideline (and EN) about the sampling and analysis of tar matter from product gas, pyrolysis gas and synthesis gas

Zeisler J, Kleinhappl M, Martini S, Neubauer Y. Reflexions on the existing guideline (and EN) about the sampling and analysis of tar matter from product gas, pyrolysis gas and synthesis gas, 20th European Biomass Conference 2012, 18th-22nd of June 2012, Milano, Italy. p 884-897.

Details

In the last years sampling at various gasification plants has been performed at Bioenergy2020+. The equipment, which is based on the recommendations of the tar guideline, has been further developed and adjusted to specific needs. For an evaluation of the procedure different parts of the equipment were tested with a new developed gas-generating unit. Most effort has been performed at the absorption of BTXE-S and PAH in 2-propanol. Additionally new characterisation-methods for pyrolysis samples with SPE (Solid Phase Extraction) have been tested and a qualitative identification of main components could be achieved. Furthermore tests for stabilisation and storage of samples were done. The results of the investigations represent an ongoing optimisation-work with the aim of establishing an international working-group which will compile guidelines for sampling organic and inorganic components at gasification and pyrolysis plants with different new online and offline methods. The appendix delivers some useful data about the substances and dynamic precipitation in an investigated impinger step.


Conference contributions | 2015

Regulation of land competition in Brazil

Ludwiczek N. Regulation of land competition in Brazil, 23rd European Biomass Conference 2015, 1st-4th of June 2015, Vienna, Austria. (oral presentation)

Details


Conference contributions | 2013

Release of gaseous compounds during torrefaction – results from test runs and modelling

Mehrabian R, Stangl S, Scharler R, Obernberger I, Janisch W, Trattner K. Release of gaseous compounds during torrefaction – results from test runs and modelling, 21st European Biomass Conference and Exhibition 2013, 3rd-7th of June 2013, Copenhagen, Denmark.

Details

Most of the current pyrolysis/torrefaction mechanisms are not able to predict the composition of pyrolysis/torrefaction products. They usually lump the products as permanent gases, liquids (condensable species) and solid residuals. However, the composition of the emitted species is required to predict the calorific value of the torrgas and to model the possible subsequent gas phase reactions and the temperature distribution within the reactor. Therefore, in this work a mechanism from literature is applied for the first time to predict the composition of the torrgas as a combination of twenty typical species. Several experimental data sets from literature are used to evaluate the mechanism. Since the mechanism predicts several relevant species (>1% wt.) in the torrgas for which no experimental data in the literature are available, test runs at a lab-scale packed bed reactor have been performed to achieve more detailed data of torrgas composition for model validation. Among the species for which measured data are available, carbon monoxide and methanol are well predicted. The predictions of carbon dioxide, methane, formaldehyde, acetaldehyde and ethanol are qualitatively correct. The predictions of water vapour, acetic acid, propanal, ethylene and sugar components show deviations. However, yields of solid residual and total emitted gas and tar are well predicted by the mechanism.


Conference contributions | 2020

Reliability of TGA data for characterization of alternative biomass feedstocks

Retschitzegger S, Kienzl N, Anca-Couce A, Tsekos C, Banks S, Kraia T, Zimbardi F, Funke A, Marques P. Reliability of TGA data for characterization of alternative biomass feedstocks. 6th Central European Biomass Conference, 2020, Graz.

Download PDF

Details


Conference contributions | 2014

Residential Wood Combustion (RWC) -Investigation of user behavior and operating conditions regarding stoves and their impact on emissions and efficiency

Reichert G, Schmidl C, Haslinger W, Moser W, Aigenbauer S, Figl F, Wöhler M. Residential Wood Combustion (RWC) -Investigation of user behavior and operating conditions regarding stoves and their impact on emissions and efficiency, 4th Central European Biomass Conference 2014, 15th-18th of January 2014, Graz, Austria.

Details

 


Contributions to trade journals | 2009

Results and Experiences of Long Term Tests of the Fischer Tropsch Synthesis at the Biomass CHP Güssing

Rauch R. Results and Experiences of Long Term Tests of the Fischer Tropsch Synthesis at the Biomass CHP Güssing, Kraftstoffe der Zukunft 2009, 7. Internationaler Fachkongress für Biokraftstoffe des BBE und der UFOP 2009, 30th of November–1st of December 2009, Berlin, Deutschland.

Details


Conference contributions | 2014

Rolle und Potenzial der Bioenergie für die Wärmeversorgung der Zukunft

Haslinger W. Rolle und Potenzial der Bioenergie für die Wärmeversorgung der Zukunft, Technologiegespräche Alpbach 2014, 13th-29th of August 2014, Alpbach, Austria.

Details


Conference contributions | 2010

Rotary Kiln Pyrolysis First Results of a 3 MW Pilot Plant

Kern S, Halwachs M, Pröll T, Kampichler G. Rotary Kiln Pyrolysis First Results of a 3 MW Pilot Plant, 18th European Biomass Conference and Exhibiton 2010, 3th-7th May 2010, Lyon, France. p 950-955.

Details

A pyrolysis process can be used to split up the biomass in a volatile fraction poor in undesired substances (Cl, N, S,
Na and K) and a char fraction where these substances are concentrated. In this way cheap biomass can be used for cofiring in existing fossil fuel power stations without the danger of corrosion, deposition, and emission problems. The aim of the project is the development and demonstration of a biomass pretreatment process based on pyrolysis in the temperature range between 450-650 °C to split the energy in the biomass into volatiles with a low content of the above mentioned undesired compounds and char, where most of these pollutants are concentrated. The balance of the system can provide important results, such as the development of the product spectrum by a function of the operating parameters. Based on the results of the pilot plant a scale up to a capacity of 30 MWth fuel input and the connection with the coal fired power plant is currently investigated.


Contributions to trade journals | 2012

Rotary kiln pyrolysis of straw and fermentation residues in a 3 MW pilot plant – Influence of pyrolysis temperature on pyrolysis product performance

Kern S, Halwachs M, Kampichler G, Pfeifer C, Pröll T, Hofbauer H. Rotary kiln pyrolysis of straw and fermentation residues in a 3 MW pilot plant - Influence of pyrolysis temperature on pyrolysis product performance. J Anal Appl Pyrolysis. 2012;97:1-10.

External Link

Details

The idea of co-firing biomass in an already existing coal-fired power plant could play a major contribution in the reduction of carbon dioxide emissions. Huge amounts of unused biomass in terms of agricultural residues such as straw, which is a cheap and local feedstock, are often available. But due to the high amount of corrosive ash elements (K, Cl, etc.), the residues are usually not suitable for co-firing in a thermal power plant. Therefore, the feedstock is converted by low temperature pyrolysis into gaseous pyrolysis products and charcoal. A 3 MW pyrolysis pilot plant located next to a coal-fired power plant near Vienna was set up in 2008. For the process, an externally heated rotary kiln reactor with a design fuel power of 3 MW is used which can handle about 0.6-0.8 t/h straw. The aim is to investigate the fundamentals for scale-up to the desired size for co-firing in a coal-fired power plant. In addition to the desired fuel for the process, which is wheat straw, a testing series for DDGS was also performed. The high amount of pyrolysis oil in the gas had positive effects on the heating value of the pyrolysis gas. Chemical efficiencies of this pyrolysis pilot plant of up to 67% for pyrolysis temperatures between 450°C and 600°C can be reached. The focus of this work is set on the pyrolysis products and their behavior at different pyrolysis temperatures as well as the performance of the pyrolysis process. © 2012 Elsevier B.V.


Conference contributions | 2010

Rotary kiln pyrolysis- First results of a 3 MW pilot plant

Kern S, Halwachs M, Pröll T, Kampichler G. Rotary Kiln Pyrolysis First Results of a 3 MW Pilot Plant, IFC on IGCC and XtL 2010, 3rd-5th of May 2010, Dresden, Germany.

Details

A pyrolysis process can be used to split up the biomass in a volatile fraction poor in undesired substances (Cl, N, S,
Na and K) and a char fraction where these substances are concentrated. In this way cheap biomass can be used for cofiring in existing fossil fuel power stations without the danger of corrosion, deposition, and emission problems. The aim of the project is the development and demonstration of a biomass pretreatment process based on pyrolysis in the temperature range between 450-650 °C to split the energy in the biomass into volatiles with a low content of the above mentioned undesired compounds and char, where most of these pollutants are concentrated. The balance of the system can provide important results, such as the development of the product spectrum by a function of the operating parameters. Based on the results of the pilot plant a scale up to a capacity of 30 MWth fuel input and the connection with the coal fired power plant is currently investigated.


Contributions to trade journals | 2017

Rural electrification and capacity expansion with an integrated modeling approach

Hartvigsson E, Stadler M, Cardoso G. Rural electrification and capacity expansion with an integrated modeling approach. Renewable Energy by Elsevier. 2017.

Details


Kontaktieren Sie uns

Sie erreichen unser Office unter der Adresse office@best-research.eu

Nutzen Sie auch die Möglichkeit, direkt von dieser Webseite eine Nachricht an unsere Mitarbeiter_innen zu schicken. Schnell und unkompliziert.

Zur Team-Seite